COMMON COMMODITIES
OF COMMERCE.

UNIVERSITY OF CALIFORNIA LIBRARY
OIL
UNIFORM WITH THIS VOLUME

Each 1s. 6d. net

PITMAN'S
COMMON COMMODITIES
OF COMMERCE

COFFEE . By B. B. Keable
TEA . . By A. Ibbetson
COTTON . By R. J. Peake
SUGAR . By G. Martineau, C.B.
CUTTING LAVENDER

By permission of Messrs. W. Ransom & Co., Hitchin
PITMAN'S COMMON COMMODITIES OF COMMERCE

OIL
ANIMAL, VEGETABLE, ESSENTIAL, AND MINERAL

BY
C. AINSWORTH MITCHELL

LONDON
SIR ISAAC PITMAN & SONS, LTD., 1 AMEN CORNER, E.C.
BATH AND NEW YORK
PREFACE

In the following pages I have endeavoured to tell in language free from technicalities the story of the origin, methods of preparation, and uses of that immense class of commercial products to which the name of "oil" may be applied.

It will readily be understood that the ground to be covered was so extensive, that it was necessary to dwell chiefly upon the most typical products in each class, and to make little or no mention of some of the less common substances, such as the little known vegetable fats from Central Africa, which have as yet chiefly a scientific interest.

With regard to the section on Essential Oils my best thanks are due to Mr. E. Parry, F.I.C. for permission to make use of certain details of information given in his standard work on the subject; and also to Messrs. Schimmel and Co., the well-known distillers of volatile oils, for their kindness in lending illustrations of their rose fields and distillation plant near Leipsic.

In writing the section upon Mineral Oils it was necessary to consult numerous scientific publications and works upon the subject, and in particular I should like to acknowledge my indebtedness for information upon historical and manufacturing details to the writers of
the following books:—Petroleum and its Production, by Sir B. Redwood; Treatise on Mineral Oils, by Mr. J. J. Redwood; Le Pétrole, by M. de Fonvielle; The Story of Oil, by Dr. Tower; and The Technology of Petroleum, by MM. Neuburger and Noalhat.

The illustrations in this part of the book are specially reproduced from photographs kindly supplied by the Baku Russian Petroleum Oil Company, to whom also I tender my thanks.

C. AINSWORTH MITCHELL.

White Cottage,
Amersham Common,
Bucks.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>V</td>
</tr>
<tr>
<td>PART I</td>
<td></td>
</tr>
<tr>
<td>FIXED OILS, FAT, WAXES</td>
<td>1</td>
</tr>
<tr>
<td>VEGETABLE OILS</td>
<td>4</td>
</tr>
<tr>
<td>NON-DRYING OILS</td>
<td>10</td>
</tr>
<tr>
<td>SEMI-DRYING OILS</td>
<td>16</td>
</tr>
<tr>
<td>DRYING OILS</td>
<td>20</td>
</tr>
<tr>
<td>VEGETABLE OILS</td>
<td>24</td>
</tr>
<tr>
<td>SOLID FATS</td>
<td>26</td>
</tr>
<tr>
<td>BUTTERS</td>
<td>29</td>
</tr>
<tr>
<td>ANIMAL OILS</td>
<td>30</td>
</tr>
<tr>
<td>FISH OILS, MARINE ANIMAL OILS</td>
<td>30</td>
</tr>
<tr>
<td>WAXES</td>
<td>32</td>
</tr>
<tr>
<td>PART II</td>
<td></td>
</tr>
<tr>
<td>ESSENTIAL OILS</td>
<td>35</td>
</tr>
<tr>
<td>VOLATILE OILS USED IN PERFUMERY</td>
<td>43</td>
</tr>
<tr>
<td>VOLATILE OILS USED AS FLAVOURING AGENTS</td>
<td>72</td>
</tr>
<tr>
<td>VOLATILE OILS USED AS DRUGS</td>
<td>88</td>
</tr>
<tr>
<td>VOLATILE OILS USED AS SOLVENTS</td>
<td>92</td>
</tr>
<tr>
<td>PART III</td>
<td></td>
</tr>
<tr>
<td>MINERAL OILS</td>
<td>95</td>
</tr>
<tr>
<td>APPENDIX:—THE TRADE IN OIL</td>
<td>121</td>
</tr>
<tr>
<td>INDEX</td>
<td>127</td>
</tr>
</tbody>
</table>

vii
LIST OF ILLUSTRATIONS

CUTTING LAVENDER Frontispiece
SEFF-CONTAINED BELT-DRIVEN EDGE STONES 2
SEED-HEATING KETTLE 6
SEW-ACTING CAKE MOULDING MACHINE 8
OLIVE TREES 12
A WEST INDIAN PALM BEACH 16
COPRA DRYING 22
COCO-NUTS 26
DISTILLATION APPARATUS FOR ESSENTIAL OILS 36
A MODERN STILL FOR ESSENTIAL OILS 40
A ROSE HARVEST 50
PEPPERMINT HARVEST IN MICHIGAN 70
PEPPERMINT STILL p. 74
CUTTING PEPPERMINT 78
A VANILLA VINE 80
GATHERING BELLADONNA 88
LORD ROTHSCILD'S FOUNTAIN AT BIBI-EIBAT 96
OIL WELL BEFORE SAND WAS THROWN UP 104
OIL WELL AFTER SAND WAS THROWN UP 106
NOBEL'S LAKE AT BALAKHANY ON FIRE 112

viii
Nature of Fixed Oils.—The term "fixed oil" is employed as a convenient description for distinguishing between ordinary vegetable and animal oils and fats, and the volatile mineral and essential oils. Strictly speaking there is no sharp distinction between fats and oils, the former being reduced to an oily condition by heating and the latter converted into solid fats when sufficiently chilled.

Apart from this, they are for the most part of similar chemical composition, consisting in the main of compounds of glycerin with various acids known as "fatty acids" from the fact that they were first isolated from fats.

Thus, for example, lard consists of compounds of glycerin (known as glycerides) with solid fatty acids (stearic acid, palmitic acid), and with a smaller proportion of liquid fatty acids (oleic and linolic acids). In tallow, there is a larger proportion of the hard stearic acid, less palmitic acid, and still less of the liquid fatty acids. Again, in the case of olive oil, the chief constituent is the liquid fatty acid, oleic acid, whilst the solid fatty acids are only present to a relatively small extent. In other oils, other liquid fatty acids such as linolic and linolenic acids are present, while in other solid fats, especially those of the vegetable kingdom, glycerides of
other solid fatty acids are important constituents. The waxes, of which beeswax may be regarded as typical, differ from the ordinary oils and fats, in consisting of compounds of various fatty acids, with alcohols other than glycerin.

It is chiefly by means of the separation and properties of these various fatty acids and their compounds that it is possible to distinguish between different oils and fats.

The fixed oils and fats have many properties in common. Thus, they cannot be evaporated (like essential oils) at the ordinary atmospheric pressure without decomposition, and when heated they do not give off inflammable vapours until a temperature sufficient to decompose them is reached.

Saponification.—When boiled with a solution of potash or soda, oils and fats are slowly decomposed or saponified, and form soaps, the nature of which will depend upon the alkali used and the kind of oil or fat. For instance, a very hard soap is obtained from tallow and from earthnut oil, whereas cocoanut fat yields a soft soap, which is readily soluble even in hard waters, and is therefore used as the basis of the so-called "marine soaps," which will give a lather with sea-water.

Drying Properties.—Vegetable oils differ to a pronounced extent from one another in the manner in which they form a dry skin when exposed to the air in a thin film, these differences depending chiefly upon the nature of the fatty acids. Thus, linseed oil dries very rapidly and is therefore regarded as the type of drying oils; cotton seed does eventually form a dry film, but the process is so slow that, together with oils of similar drying capacity, it is classified in a group termed semi-drying oils; whilst the third class, or non-drying oils, belong to those, which, like olive and almond oils,
By permission of Messrs. Greenwood & Batley, Ltd.

SELF-CONTAINED BELT-DRIVEN EDGE STONES
remain practically unaltered in consistency after long exposure to the air.

Some of the animal products also possess drying properties, and this is particularly the case with the oil of certain wild birds such as the blackcock.

Classification.—The vegetable oils may be considered under the following groups based upon the foregoing differences: (1) Non-drying oils; (2) Semi-drying oils; (3) Drying oils; (4) Vegetable fats. The animal oils and fats, again, are conveniently classified in the following groups: (1) Solid body fats (tallow and lard group); (2) Milk fats (butters); (3) Animal oils; (4) Fish and marine animal oils. The waxes (animal and vegetable) form a third main group. Naturally, as in all classifications of natural products, these groups overlap, and certain oils might be placed equally well in more than one group.

I. VEGETABLE OILS

Extraction.—The methods of separating the oils from seeds or fruits depend partly upon the size, hardness and other properties of the fruit, etc., and partly upon the consistency of the oil and the uses for which it is intended.

The different methods used for the separation depends upon (1) Expression, in which the seeds are crushed and oil expressed; and (2) Extraction, in which the oil is dissolved out by means of a suitable solvent which is subsequently evaporated, leaving the extracted oil as a residue.

Expression.—The methods of expression range from the primitive hand presses used by the natives in West Africa, India and elsewhere, to the modern highly effective apparatus now employed for the expression of the oil from the seeds of the cotton plant (see p. 16).
Other machines are employed in preparing the crude material for extraction or expression. Thus cotton seed and earth nuts need decorticating, while linseed and rape-seed need screening and cleaning, and cocoanuts are broken up in a special disintegrating apparatus. Prior to pressing, large seeds or bulky material are ground up in what is known as an "edge-runner" seed mill, in which two vertical stones are made to revolve in a circular trough. The material is then transferred to seed crushers, containing one or more series of rollers, which may be grooved (for palm kernels or earthnuts) or smooth for breaking up linseed seed or cocoanut pulp (coprah). In the case of small seeds the preliminary grinding is unnecessary. The material, thus reduced to a pulp or meal, is next heated in large cylinders known as "kettles," through which pass steam pipes, and is then delivered to the press. Or in the case of certain substances rich in oil this heating may be omitted, since the oil-cells can be ruptured without the aid of heat. The seed-meal, with or without previous heating, is received in press-cloths, consisting of closely-woven cotton cloth, enveloped in horsehair cloths, and is subjected to a preliminary squeezing to mould it into "cakes." These, still wrapped in the cloths, are next packed between the pressing plates of a hydraulic press and submitted to heavy pressure, so that the oil exudes, and passes by way of grooves or holes in the plates to the bottom of the press, whence it can be drawn off into suitable tanks placed at a lower level. As a rule, the pressing is repeated once or twice, the material being first broken up each time in a cake-breaking machine or in the edge-runner mill.

In certain types of presses circular iron boxes, the inner lining of which is perforated with holes, take the place of the plates and cloths, and these have the
advantage of giving a more uniform pressure to the material, and consequently a larger yield of oil.

Oil of the first pressing is superior to that obtained in the second and third pressings, the latter containing a larger proportion of substances other than oil.

Extraction of Oil.—The chief solvents employed in extracting oil are petroleum spirit, carbon bisulphide, and, more recently, carbon tetrachloride. The first is dangerous to use owing to its great inflammability, while the fumes of carbon bisulphide are nauseous and poisonous. Carbon tetrachloride is also dangerous to breathe, but if proper precautions are taken to prevent the escape of the vapour, is the least objectionable of the three.

In extracting the oil the finely divided meal is introduced into a vessel which is tightly closed down, while a current of the solvent is made to percolate through its contents. When this has become charged with the oil it is drawn off, and the material treated with a fresh quantity of solvent, until it is completely exhausted.

Frequently the extraction vessels are placed so as to form a battery, and the solvent passes through them successively, becoming more and more charged with oil on its way; and in some apparatus the extraction is accelerated by the use of steam pipes. Finally, the solvent, with the oil in solution, passes into a vessel heated by steam, in which the solvent is evaporated, leaving a residue of the extracted oil. The solvent expelled from the oil is condensed and returned to the storage tank to be used again.

The use for which the oil is intended largely determines whether it shall be extracted or expressed. In the case of edible oils, such as olive, sesame, maize and earthnut oils, expression is necessary, since it yields a purer product than extraction. It is also advisable to
By permission of Messrs. Greenwood & Batley, Ltd.

SEED HEATING KETTLE AND HYDRAULIC CAKE-MOULDING MACHINE
separate the oil by expression, where it is desired to use the expressed oil-cake as a feeding-stuff for cattle. On the other hand, the extraction process yields a larger proportion of oil, which is also freer from mucilaginous and other foreign bodies.

Refining of Oils.—Whether obtained by expression or by extraction the crude oil requires refining before it can be put upon the market. It invariably contains water, gummy albuminous substances, and resinous and colouring matters, some being in a state of suspension and others dissolved in the oil.

The oil is, therefore, filtered (in some cases after being heated) to separate, as far as possible, all insoluble impurities. Numerous filter-presses are employed for this purpose, some of which are based upon the creation of a partial vacuum, and others upon the use of centrifugal filtration.

Chemical purification is also used in the case of many oils: thus, rape (colza), linseed (and also certain fish oils) are frequently clarified by treatment with dilute sulphuric acid, but the process is objectionable for oils intended for lubricating purposes.

Other oils, notably cotton-seed oil, are refined by treatment with solutions of alkali, which have the effect of coagulating and precipitating mucus and albuminous substances, leaving a clear supernatant layer of oil. These processes have also the advantage of neutralising any free fatty acids present in the oil.

The "foots" or residue separated from oils containing albuminous and resinous matters is generally worked up, in admixture with other materials, into coarse soaps.

The colouring matters of oils and fats are usually due to the presence of organic substances such as chlorophyll, etc. In some cases the oil can be rendered lighter by treatment with animal charcoal and filtration, whilst
By permission of Messrs. Greenwood & Batley, Lt'.

SELF-ACTING CAKE-MOULDING MACHINE
AND SEED HEATING KETTLE
in other cases (beeswax, palm oil) the material is bleached by exposure to the sun, or by treatment with chemicals such as hydrogen peroxide, ozone, or potassium bichromate.

More recently, methods of bleaching by exposing the oil in thin films to the action of rays from an electric arc light or the ultra-violet rays of a mercury vapour lamp have been used.

Special chemical processes are also employed for deodorising oils and fats, and especially cocoanut oil, which in its deodorised form is the basis of most of the so-called "vegetable lards." In one of the most widely employed processes the cocoanut oil is treated with alcohol and animal charcoal to obtain an inodorous and perfectly white product, which is sold under various descriptive names.

Non-Drying Oils

Olive Oil.—Various species of olives are cultivated for the sake of the oil contained in the pulp of the fruit, but the oils differ but slightly from one another in their chemical and physical characteristics, though their qualities and flavour vary.

In addition to *Olea europaea*, several varieties of which are grown in Southern Europe, and have been acclimatised in various localities in America and Australia, there are also other oil-producing species (*O. ferruginea* and *O. capensis*), which are utilised in Asia and South Africa.

The degree of ripeness of the olive has a considerable influence on the flavour of the oil, and in order to obtain the finest product it is essential to press the fruit as soon as possible after picking.

The methods of obtaining the oil vary in different districts, and in some cases the stones are ground up and expressed with the fruit. Although the oil from the
fresh kernel closely resembles the pulp oil, the latter is considered to have a better flavour than the oil from the whole fruit and is sold at a higher price.

The crushed pulp or "marc" is usually packed in baskets of esparto grass bound with horsehair bands, which are then introduced into a press, each layer being separated from the next by perforated wooden or metal plates.

The oil obtained by the first expression is known as "virgin oil," and fetches the highest price, while the oils obtained by the second expression and by extraction of the residue with solvents is less pure and is frequently used as a lamp oil or for lubricating purposes.

The crude oil is sprayed to remove mechanical impurities and to precipitate albuminous matters, after which it is run into tanks, and the clear liquid subsequently decanted and filtered.

The best grades of olive oil are of a golden colour and have an odour of the fruit. The second quality, also, known as "table oil," is not so bland in flavour or aroma, while the oil subsequently extracted goes by the name of "ordinary" or "common" oil, and has a greener colour and a sharper and bitter taste.

When exposed to cold, olive oil throws down a white deposit of "stearine," or solid fat. In the so-called "winter oils" this is partially removed, so that the oils will remain liquid, whereas the untreated oils, which only remain clear when kept in a warm place, are known as "summer oils."

The finest grades of oil are derived from Italy and the South of France, and have a considerably higher market value than Spanish, Algerian, or Tunisian oils.

Olive oil is extensively adulterated, the chief substances employed for the purpose being cotton-seed oil, sesame oil and earthnut oil,
Almond Oil.—This oil is expressed from the kernels of the sweet or bitter almond, which contain from 40 to 55 per cent. thereof. There is practically no difference between the characteristics of the oil from either source. It is a pale yellow liquid with a bland taste, and is very fluid; so much so that it can be chilled far below the freezing point of water without solidifying.

It is principally used for pharmaceutical purposes, and owing to its high price is liable to be adulterated with cheaper oils, and especially with the closely similar oils derived from the kernels of the peach, apricot and plum.

Earthnut or Arachis Oil.—The seeds of the earthnut (or monkey nut), *Arachis hypogea*, yield, on expression, from 30 to 50 per cent. of oil, and the plant is extensively grown for this purpose in Virginia, South America, Africa and India.

The nuts are largely exported, and the oil expressed in Europe, the chief centre of the industry being Marseilles, where an immense quantity of African nuts are treated. The nuts, after being shelled and cleaned by machinery, are freed from the husks by means of the blast of a fan, and are then packed in cloths for the press.

The cold-pressed oil is pale yellow, and is widely employed, under the name of “salad oil,” as a cheap substitute for olive oil. The oil subsequently obtained by hot-pressing is of poorer quality, and is mainly used for lubricating purposes and in the manufacture of Castile soap.

Both grades have the characteristic odour of the nuts. When exposed to cold, earthnut oil readily solidifies into a dense white mass.

The residue obtained in the expression of the oil is a valuable seed-cake, which is used for feeding cattle.

Tea-seed Oil.—This oil, expressed in China and Japan,
from the seeds of *Camellia sasanqua* or *Camellia oleifera*, is a light yellow liquid used locally in the manufacture of soap, as an illuminant, and for cooking.

Castor Oil.—The seeds of the castor oil plant, *Ricinus communis*, yield about 50 per cent. of oil. The plant is extensively cultivated in every continent, though the bulk of the world’s supply is derived from India, which produces annually some 70,000 tons of seeds, and exports upwards of two million gallons of oil.

The product obtained by cold expression of the seeds is preferred for medicinal purposes. The fresh seeds, after being freed from dirt and foreign matter, are crushed between rollers and then wrapped in cloths and lightly compressed into the form of bricks. These are pressed between the perforated plates of a hydraulic press, and the oil collected in vessels placed beneath.

The crude oil thus obtained is purified by the addition of water, which is subsequently evaporated by boiling. In this process the albuminous matters coagulate and the mucilage subsides, so that a pure oil may then easily be obtained by filtration.

Purified castor oil is of a pale straw colour, and remains liquid when cooled far below the freezing point of water. It differs from most other oils in being very soluble in alcohol.

In addition to its uses in medicine, castor oil is extensively employed in the manufacture of the *Turkey-red oil* required in the dyeing and printing of cotton goods. The alizarine dyestuffs have to be dissolved in a suitable solvent that will also penetrate the fibres of the fabric. Formerly olive oil was used for this purpose, but its place is now taken by the “Turkey-red oil” prepared by treating castor-oil with sulphuric acid under suitable conditions.

Curcas Oil, derived from the seeds of the “physic
(tree "(Jatropha curcas), has many points of resemblance with castor oil. The plant is cultivated in the Portuguese Colonies, and the oil is expressed in Lisbon. It is used as a lubricant, as a lamp oil and in the manufacture of soap and candles.

Rape Oils.—The term "rape" or "colza" oil is used indiscriminately in this country for the oils obtained from the seeds of a number of plants belonging to the *Cruciferae*, but on the Continent a distinction is drawn between the products derived from different species of *Brassica*. Thus, in Germany, the name colza oil is restricted to the oil expressed from the seeds of *B. campestris*, var. *rapus*, while that derived from the seeds of *Brassica rapa* goes by the name of "Rübsen oil," and the product of *B. campestris*, var. *napus*, is known as "Raps" oil.

The seeds of the three plants are very similar in shape and colour, but, as a rule, colza seeds are larger, and yield a higher proportion of oil.

Rape seed is extensively grown in France, Belgium, Germany, Hungary and Russia; also in China and India.

In Europe a commercial distinction is made between "summer rape," which is sown in the spring and gathered five months later, and "winter rape," sown in the autumn and gathered the following year. The "winter oils" are usually regarded as the better products.

The oil is separated by the general methods of expression and extraction already described, and the residual seed-cake is valuable as a feeding stuff, or (in the case of extracted matter) for manure.

The crude oil is dark brown in colour, but is refined to a light yellow liquid with a harsh taste. It is used in large quantities as an illuminating oil. Among the substances employed to adulterate it mention may be made of linseed, cotton seed, fish, mineral and resin oils.
The oils from the seeds of *Eruca sativa* and Indian mustard seed (*Brassica juncea*), which are used in India as edible oils and for burning, etc., are closely allied to the rape oils.

Semi-Drying Oils

Cotton-seed Oil.—This oil is a typical representative of the semi-drying class, which dry too slowly to be of use in paints and varnishes, and yet, possessing considerable drying powers, are unsuitable for lubricating machinery. It is used, however, in immense quantities as a cheap salad oil, as a substitute for lard in cooking, and in the manufacture of oleo-margarine, while the poorer qualities are made into soap.

By far the largest proportion of the cotton-seed oil of commerce is produced in the United States, and the machinery for treating the seed so as to obtain the greatest yield of oil in an economical manner has there been brought to a high pitch of perfection.

As the seed is ginned it is removed to the factories, some of which have mills capable of dealing with 200 tons of seed in a day. The seed is first conveyed by means of elevators to the storage at the top of the building, whence it can be distributed by means of screw conveyors.

Before being expressed, it is passed through revolving perforated screens, which retain fragments of stalk, stones, sand, and other impurities, and is next conveyed to the “linters,” in which the short lint, that would otherwise absorb some of the oil, is removed. The seed thus cleaned is shelled in “hullers,” which consist of an outer cylinder and an inner drum, both of which are set with knives that rapidly revolve, and the husks or hulls are separated from the kernels by the action of an oscillating separator or “shaker.”
The kernels, technically known as the "meats," are now ready for crushing between iron rollers, after which process they are heated in steam-jacketed kettles, and shaped into cakes in a press termed the "former." These cakes are wrapped in hair cloths and subjected in hydraulic presses to a pressure of 3,000 to 4,000 lbs. to the square inch.

The crude oil is pumped into settling tanks, where the impurities subside as "foots," while the clear supernatant liquid is drawn off above and further purified as described in a previous page.

The residual oil-cake is a valuable product and is used in the United States and exported in large quantities as a food for cattle.

When chilled, cotton seed oil yields a considerable amount of a solid deposit of fat, known commercially as "cotton-seed stearine," and sometimes used as an adulterant of lard. Cotton-seed oil itself is also frequently employed to adulterate olive oil.

Sesame Oil.—This oil, also known as Gingelly oil, is expressed from the small flat seeds of *Sesamum indicum*, the yield being about 50 per cent. The plant has been cultivated in the East since a remote period, and is still produced in large quantities in India, Egypt, China and Siam. It is also grown in South Africa, in the United States and in many tropical countries.

The great centre of the sesame industry in Europe is Marseilles, where the greater proportion of the commercial oil is expressed.

The cold-drawn oil has a mild bland taste and is used as a salad oil and in the manufacture of margarin. The oil obtained by hot expression is employed as a lamp oil, and as a lubricant, for which purpose, however, its drying properties render it unsuitable.

Sesame oil is often used to adulterate olive oil, and is
itself liable to be adulterated with cotton-seed oil and earthnut oil.

It contains a small proportion of a constituent known as sesamol, which gives a bright pink colouration with certain reagents. In this way it is possible to detect the presence of very small quantities of sesame oil in other oils and fats. Advantage is taken of this property in Belgian and German food legislation, which prescribe that all margarine shall contain 10 per cent. of sesame oil, so that should butter be adulterated with margarine the fraud may be readily detected by means of the "latent colour" of the oil.

Maize Oil.—The seeds of the maize plant, Zea mais, contain from 6 to 8 per cent. of oil, which is extensively used, especially in the United States, for food, soap making, and as a lamp oil.

It has an aroma of the grain, and when freshly expressed it is of a pale straw colour, but gradually becomes yellow on exposure to the air.

Croton Oil.—The seeds of Croton tiglium, which is cultivated in Southern Asia and China, yield, on expression an oil, which is employed medicinally. The commercial product is sometimes adulterated with hydrocarbons and with castor oil.

Other semi-drying oils that find a commercial use are:

Kapok Oil, obtained from the seeds of Eriodendron anfractuosum, cultivated in the Dutch East Indies for the silky floss (sold as kapok) that envelops the seed capsules. The expressed oil is of a greenish-yellow colour, and has many points of resemblance with cotton-seed oil. It is used in Holland in the manufacture of margarine and as a soap material.

Cameline Oil, also known as German sesame oil, obtained from the seeds of Camelina sativa. It is used
in the manufacture of soft soap and, to a less extent, as food, and is also employed to adulterate rape oil.

Madia Oil, which is expressed from the seeds of Madia sativa, grown in Chili. The best (cold drawn) oil is employed as a food, while the poorer qualities are used as lamp oils, and in the manufacture of soap.

Soja Bean Oil, derived from the soja bean (Soja japonica, S. hispida), grown in India and Southern Asia.

Drying Oils

Linseed Oil.—The flax plant (Linum usitatissimum) is widely cultivated both for its fibre, and for the oil yielded by the seeds, though Russia is the only country producing both flax and linseed on a commercial scale. In Europe the plant is grown mainly for fibre, while in other countries, notably in the United States, Argentina, Uruguay and British India, the plant is grown almost exclusively for its seed.

The seeds are known in two varieties, red and white, the oil produced by the latter being regarded as the better in quality.

After being stored for some time, the seeds are screened and crushed, and the oil separated by hot expression. Some of the best grades of oil used in Russia as edible oils, or for light-coloured paints, are pressed in the cold, but hot expression is the general method. The crude oil is purified by filtration from the separated albuminous substances and mucilage.

In the United States an extraction method, with naphtha as the solvent, is in common use, the naphtha being subsequently removed by distillation.

Purified linseed oil varies in colour from light yellow to brown. The commercial product has usually an acrid taste and odour, soon darkens and thickens on
exposure to the air and absorbs oxygen to form a dry elastic film.

This drying property is greatly increased by heating the oil in the presence of certain metallic salts (such as litharge), known as "driers." The "boiled" oil thus obtained is much thicker and darker than raw linseed oil, and dries very rapidly when exposed to the air.

Boiled linseed oil is employed as the basis of oil paints and varnishes, in the manufacture of printer's ink, and (in admixture with powdered cork and other materials) for making linoleum.

Linseed oil is liable to be adulterated with cotton-seed oil and other semi-drying oils, with rosin oils, and with mineral oils.

Nut Oil.—The oil expressed from the kernels of the common walnut tree (*Juglans regia*) yield from 40 to 45 per cent. of oil, which is usually known commercially as nut oil. The cold-drawn oil is employed as a food oil, while the hot-pressed oil is used for illuminating purposes, and especially a medium for white oil paints, for which its pale colour renders it particularly suitable.

Poppy Oil.—This is another drying oil that is largely employed by artists. It is obtained from the seeds of the opium poppy (*Papaver somniferum*), which is cultivated in Persia, Asia Minor, Egypt and India. It is also grown in France and in Germany, where two varieties with white and black seeds are recognised. The fresh oil obtained by cold expression is used as a salad oil and in cooking, while the darker qualities resulting from hot expression are burned in lamps or made into soap.

Poppy oil is frequently used to adulterate olive oil in France, and is in turn itself adulterated with sesame oil.

Hemp-seed Oil.—The seeds of the hemp plant (*Cannabis sativa*) yield a greenish-yellow oil, which dries
well, though less rapidly than linseed oil. It is grown in Russia and Germany, in Egypt, in Central Asia, and elsewhere. It is used as a medium for oil paints and varnishes and in the manufacture of soft soap.

It is also a common adulterant of linseed oil.

Tung Oil.—The commercial oil, which has now become generally known in Europe, is expressed and extracted from the nuts of *Aleurites cordata* and probably of allied species of plants, which are cultivated and grow wild in different localities in China and Japan.

It is a pale yellow or dark brown oil with an unpleasant odour, which has stood in the way of its general adoption in the linoleum and varnish industries.

It dries with great rapidity and can be used for varnishes without preliminary "boiling."

When heated and exposed to the action of light, tung oil suddenly undergoes a change in form and becomes a sticky, gelatinous mass. This "polymerised" tung oil is used in commerce to prevent the separation of the pigment from the oil in oil-paints put up in tubes.

Candle-nut Oil derives its name from the nuts of the tree (*Aleurites moluccana*), being used by the natives of the South Sea Islands as candles. The tree is common in those islands, and the oil obtained from its nuts is used for making soft soap and as a varnish.

Safflower Oil.—This oil, also known as saffron oil, is expressed or extracted from the seeds of *Carthamus tinctorius*, which is cultivated in India, Egypt, China, and, more recently, in South Russia. It resembles walnut and poppy oils in its general characteristics.

Sunflower Oil is a good drying oil, which is obtained from the seeds of the sunflower (*Helianthus annuus*), grown extensively in Russia. It is used as a food and for making varnishes, etc.

Niger-seed Oil.—This is a pale yellow oil with good
drying properties. It is expressed from the seeds of *Guizotia oleifera*, an annual plant cultivated to a considerable extent in India, Abyssinia and Egypt.

Vegetable Fats

Palm Oil and Palm-kernel Oil.—Two different fats are obtained from the fruit of the West African oil-palm (*Elaeis guineensis*), viz.: palm oil, a yellow or red-coloured fat separated from the fruit pulp, and palm-kernel oil, a white fat expressed from the kernels of the seeds.

In addition to the West Coast of Africa, the oil palm also flourishes in Zanzibar, in Central Africa, and in the Philippine Islands. It grows to a height of 30 feet or more and produces large "heads," in each of which are several hundred fruits.

In preparing the oil, the fruits are boiled to a pulp with water, and the mass, after cooling, pressed by men treading on it in a trough. The oil rising to the surface is skimmed off and passed through a sieve to remove impurities, after which it is heated and separated from the water.

As thus obtained, palm oil is a fat varying in colour from orange yellow to dirty red, and having a characteristic sweet odour and taste. In its fresh condition the natives use it as food, while large quantities are exported to Europe for the manufacture of soap and candles, and for use as a grease to prevent the oxidation of iron plates before being tinned.

The oil from the kernels, which is also known in commerce as "palm-nut oil," is prepared by cracking the nuts between stones and separating the kernels. These are imported to Europe and expressed in hydraulic presses by the methods already described.

Cocoanut Oil.—The cocoanunt palm, which produces
this important fat, flourishes in Madras and other
districts of India, in Ceylon, in the West Indies, the
Malay Peninsula, South America, East Africa and
many other tropical localities.
After removal of the outer fibrous covering, which
yields the coir of commerce, the ripe nuts are broken,
and the kernels either expressed locally, or cut into
pieces, dried and exported under the name of coprah.
Cocoanut oil is a soft white fat, which melts at a
low temperature and has a characteristic odour and taste.
It readily turns rancid, and various commercial processes
of checking this tendency and of removing the odour
have been devised. These deodorised products are sold
under various fancy names as vegetable substitutes for
butter and lard.
Cocoanut oil is a common adulterant of cow’s butter,
which it somewhat resembles in chemical composition.
Cacao Butter (Cocoa Butter) is derived from the seeds
of the cacao tree (Theobroma cacao), and is obtained
in large quantities in the manufacture of chocolate.
It is a hard yellowish white fat having an aroma of cacao.
It is extensively used as the fat for chocolate creams.
It is frequently adulterated, especially with cocoanut
oil, stearic acid, tallow and paraffin wax.
Japan Wax is derived from the berries of Rhus
succedanea and allied species of Rhus, which are cultivated
in Japan. Although it resembles wax in appearance, it
is chemically as much a fat as cocoanut oil. It is a hard,
brITTLE, yellowish-brown substance, which is used as a
substitute for beeswax in the manufacture of furniture
polishes, etc.
Among other vegetable fats mention may also be
made of the following:—
Macassar Oil, expressed from the seeds of the Indian
tree Schleichera trijuga, and long used as a hair restorative.
Kokam Butter, contained in the seeds of the plant *Garcinia indica*, which is used in India as a food and for making soap.

Carapa Fat, which is a thick white fat obtained from the seeds of various species of *Carapa* growing in India, Brazil and West Africa. It is used in the manufacture of soap.

Shea Butter, from the seeds of *Butyrospermum Parkia*, which grows in northern tropical Africa. It also is used in the manufacture of soap and candles.

Phulwara Butter, produced by *Bassia butyracea*, a tree known as the Indian "butter tree."

Mahua Butter, the product of other species of *Bassia*, growing in India.

An important use of these and similar vegetable fats is the preparation of cheap substitutes for cacao butter for the "cream" of chocolate creams.

II. ANIMAL FATS AND OILS

Solid Fats

Lard.—In the preparation of lard from the fatty tissues of the pig the material is finely divided and "rendered" in a digester into which steam, usually under pressure, is introduced. In some of the large American factories a series of these digesters, each having a capacity of 10,000 to 15,000 gallons, is employed, the melted fat being drawn off through a perforated false bottom.

In the American trade lard is classified into various grades, including (1) Neutral lard, the fat from the fresh leaf of the pig rendered at a low temperature; (2) leaf lard, from the residue of (1) rendered under pressure; (3) choice lard, consisting of leaf and back fat; (4) prime steam lard, the fat from the head, heart and intestines;
and (5) guts, derived from all parts of the animal, except the lungs and heart.

There is a considerable difference in the chemical composition of American and European lards, the former being of a more fluid character. The fat from different parts of the same pig also varies greatly in its composition and characteristics.

Lard is often adulterated with beef fat and then rendered sufficiently soft again by an addition of a vegetable oil such as cotton-seed or maize oil.

Tallow.—The name "tallow" is given to the fat from many kinds of animals, but particularly the ox and sheep. The various grades known in commerce are described under names indicative of their origin, such as "River Plate tallow," "Russian tallow," etc. As a rule, the Russian products are more solid and melt at a higher temperature than the other grades.

Tallow may be adulterated with cheaper fats, such as cotton-oil stearine, or with non-fatty substances, such as paraffin wax.

Beef Fat.—The fat of the ox varies in characteristics with the part of the animal whence it was taken, but is much more solid than lard. It forms the chief basis of oleo-margarine, which is made up into margarine and other butter substitutes.

Margarine.—The first attempts upon a manufacturing scale to prepare a butter substitute from animal body fats, dates back to the siege of Paris, when Mège Mouries devised a process of preparing it, chiefly from horse fat.

In the modern processes the fat from beef or mutton suet is pressed so as to obtain a compact fat, termed "beef stearin," which is largely employed in making artificial lard, and a semi-solid oily fat. The latter is churned up with fresh or sour milk and sometimes with "renovated" butter, and coloured to imitate butter.
When the beef fat is too stiff it must be thinned down with a vegetable oil.

Various patents have been taken out for processes to imitate the characteristics of butter still more closely.

Deer Fat.—The fat rendered from the tissue of various species of deer is white and hard, and is similar to tallow in its composition and characteristics, and is used for similar purposes.

Butters

Cow's Butter.—The only milk-fat of commercial importance in Europe is that prepared from the milk of the cow.

Butter usually contains from about 11 to 16 per cent. of water; 83 to 87 per cent. of butter fat; and from 1 to $3\frac{1}{2}$ per cent. of solid substances other than fat (including salt, casein and milk sugar). In Irish butters the percentage of water is often considerably higher, while in preparations that have been "blended" with milk it may be 25 per cent. and over.

The characteristics of the fat vary with the breed of cows and with the conditions under which they are kept. Thus, Dutch butter frequently has an abnormal composition, which suggests adulteration with body fats or vegetable fats. This has been found to be principally due to leaving the cows too long in the fields, and after stalling the animals the butter soon becomes normal.

The nature of the food given to the animals may also have an influence upon the composition of the butter fat. For instance, cows that have been fed upon cotton-seed cake produce butter-fat that gives the reactions for cotton-seed oil.

Butter fat differs from body fats in yielding a large proportion of volatile fatty acids, and the tests of the purity of a sample depend largely upon this characteristic.
The chief adulterants of butter are cocoanot oil and palm oil (which also yield volatile fatty acids), and margarine, which is prepared from animal fats and vegetable oils.

Renovated or "process" butter is the commercial name of a product consisting of stale butter that has been melted down and the fat re-churned with butter-milk. The fraudulent sale of this product as fresh butter is not easily detected, and reliance has mainly to be placed upon the differences in their microscopical appearance.

Animal Oils

The chief animal oils of commercial importance are the following:

- **Neat’s-foot Oil**, which is a pale yellow very fluid oil, derived from the "feet" (hoofs and hocks) of various animals (oxen, horses, sheep). It is used as a lubricant for clocks, watches and other delicate machinery.

- **Lard Oil**, which consists of the more liquid portion of lard, is obtained by expressing lard in bags of close texture, in a hydraulic press. The residual more solid fraction is known as "lard stearine," and is used in the manufacture of the best grades of soap.

- **Tallow Oil**, which is obtained from ox-tallow and mutton-tallow in the same way as lard oil, the solid residue in this case being known as "tallow stearine."

- **Chrysalis Oil**.—Oil is now extracted in large quantities from the chrysalis waste in the silk-producing districts of Japan. It is a yellowish-red liquid with an unpleasant odour, and is used in the manufacture of soap.

Fish Oils and Marine Animal Oils

The fat of fishes and of whales and other marine animals differs greatly in physical characteristics from the fat of land animals, and consists of oils which have
many points of chemical resemblance with linseed oil, although lacking the latter's drying properties.

Cod-liver Oil.—This oil, as its name indicates, is separated from the liver of the cod-fish (*Gadus morrhua*). The fresh livers are first stored in open barrels to allow a certain proportion of the oil to exude spontaneously, after which they are heated in pans surrounded by a jacket of steam. Lastly, the residual tissue is boiled with water and an inferior grade of oil of a brown colour separated.

In some factories processes are used in which the material is kept out of contact with the air, so as to prevent oxidation and the development of unpleasant flavours.

In addition to the medicinal cod-liver oil, a dark brown product derived from old livers is sold under the name of "cod oil."

Cod-liver oil contains various nitrogenous compounds, and it is to these that its therapeutic action is probably due.

Menhaden Oil is obtained from the menhaden (*Alosa menhaden*), a North American fish. The fish is first steamed and crushed and then gently pressed to obtain the best oil. The residue is next boiled or steamed and subjected to heavier pressure, which yields an oil of inferior quality to the first runnings, while the final residue is worked up into fish manure.

Menhaden oil is chiefly employed in the currying of leather and in the manufacture of cheap soaps. It is also occasionally used as an adulterant of linseed oil.

Sardine Oil is an important commercial product, which is derived from various species of *Clupea*. The Japanese oil, considerable quantities of which are expressed and refined in Yokohama, differs considerably from the European sardine oils,
All are used in the manufacture of soap and as lubricants. The solid fat which deposits from the oil on standing is sold as "fish wax" or "fish stearine."

Among other commercial oils of this class mention may also be made of the following:—

Shark Oil, expressed from the livers of different species of shark.

Whale Oil, derived from the blubber of different species of whale, and used in large quantities, especially in the United States, as a lubricant and for soap-making.

Porpoise Oil, from the jaw or from the whole body of the porpoise, the two oils differing considerably in characteristics.

Dolphin Oil, from the blubber of the dolphin.

Many of these oils are mixed together before being sold.

III. WAXES

As has been stated on a preceding page, the waxes differ from fats in containing, in place of glycerin, some other alcohol in combination with fatty acids.

The most important members of this group are beeswax, carnauba wax, wool fat, spermaceti, and sperm oil, which notwithstanding its oily nature, is chemically just as much a wax as beeswax.

Beeswax.—This familiar product is prepared by melting the wax, after separation of the honey, and casting it into blocks, which are sold as "virgin wax."

For certain purposes bleaching is required, and this is effected either by exposing the wax, cut into thin strips, to the action of the sun, or by means of chemical agents, such as potassium bichromate and sulphuric acid.

Considering the diversity of its origin beeswax shows remarkable constancy in its chemical composition, though Indian and Chinese waxes differ in many respects from the European products.
WAXES

Beeswax is frequently adulterated, and especially with stearic acid, carnauba wax, and paraffin wax.

Carnauba Wax.—This consists of a deposit which exudes from the leaves of the wax palm (*Copernicia cerifera*), a tree growing in Brazil and other parts of South America.

It is a dirty greenish-grey wax-like solid, which is used in the manufacture of wax candles and floor polishes, and is also a common adulterant of beeswax.

Wool Fat.—This consists of the fat deposited in perspiration on the fleece of sheep. It is extracted either by washing the fleece with soap, or, as is more usual on the Continent, by means of a solvent, which is subsequently evaporated. The “wool grease” thus separated is generally purified by distillation with superheated steam, and when formed into an emulsion with water is sold under the name of “lanoline.”

Wool fat has a very complicated chemical composition, but is much more akin to the waxes than the true fats, although it contains certain glycerides.

Sperm Oil.—This liquid wax is obtained from the blubber or from the contents of the cranial cavity of the Cachalot whale, the latter product differing in many respects from the former.

It is a pale yellow oil, which is nearly odourless when expressed from fresh material. It is a valuable lubricant, since it shows no tendency to become viscid on exposure to the air. It is sometimes adulterated with low-grade fish liver oils.

Arctic Sperm Oil, also sold as *Bottlenose oil*, is obtained from the bottlenose whale (*Hyperoodon rostratus*), and resembles ordinary sperm oil in its chemical and physical characteristics. It is used as a lubricant.

Spermaceti.—This is a white wax, which is obtained
from the "head matter" of the Cachalot whale, and is also deposited when sperm oil is allowed to stand.

Analogous deposits are obtained from the blubber oils of various cetacea, from which they are separated by gentle pressure in hair cloths.

Spermaceti is liable to be adulterated with hard tallows, animal waxes, and paraffin wax.
PART II
ESSENTIAL OILS

Nature of Essential Oils.—The term "essential oil" is used as a convenient group-name for a class of volatile substances occurring in various parts of plants. It is a survival from the days of alchemy, when every substance was supposed to contain some essence or active volatile principle to which it owed its characteristic properties. Now the name is restricted to scent-bearing oily products of vegetable origin, most of which may be distilled without decomposition at the ordinary atmospheric pressure.

It is to these oils that flowers owe their scent, and spices their fragrance, and an aromatic plant, such as cinnamon, for instance, may be completely freed from its distinctive odour and flavour by extracting its essential oil. The aroma will then be concentrated in the separated oil, whilst the residual plant-structure will be devoid of the original taste or smell.

Distribution in the Plant.—Essential oils are secreted in different parts of the plant. In scented flowers, such as the rose, they are chiefly concentrated in the petals of the flower; whereas in spice-producing plants the chief deposit may occur in the leaves and bark, as in the case of cinnamon, or in the fruit (nutmeg); while in some cases (e.g., in certain kinds of pine tree) the essential oil may be distributed in varying proportions throughout all parts of the plant.

The part played by essential oils in the life-history of the plant is obscure, though doubtless in the case of unfertilised blossoms the scent attracts the insects carrying the fertilising pollen.
Some light is also thrown upon this point by recent experiments made in France to determine the relative distribution of oil in different parts of perennial plants at various stages of their growth. In the case of wormwood (Artemisia absinthia) it was found that at an early period the roots were free from oil, and that the leaves contained more oil than the stem. The proportion of oil in the whole plant then steadily increased up to the flowering period, when the leaves contained twice their former proportion. In the later stages of flowering the proportion of oil in the root increased, while that in the other parts of the plant diminished.

Similarly in the case of vervain (Verbena triphylla) the process of flowering was accompanied by destruction of the scent-bearing constituents, probably by an oxidation process, in order to supply the energy required for the work of fertilisation.

The practical application of the results of these experiments is that in order to obtain the best yield of essential oil from the leaves of such perennial plants it is advantageous to retard the flowering period as long as possible, and in any case, to distil the oil before the blossoming time.

Preparation.—The earliest method of separating the oil from the plant by distillation was to mix the finely divided material with water in a copper still, and to heat the mixture over a fire. The steam passing over carried with it the fine particles of oil, and both were condensed in a suitable receiver.

As there is considerable risk of spoiling the oil by over-heating in this process, it is now more usual to place the material in wire cages suspended within the still, or upon a perforated false bottom, so as to prevent all chance of its coming in contact with the heated bottom of the still. A modification of this kind is still widely
employed in the distillation of essential oils from flowers in different parts of England, and the admitted excellence of English oils shows that the process, notwithstanding its disadvantages, leaves little to be desired as regards the quality of its products.

It is now being gradually superseded, however, by processes in which the still is not heated directly, but receives a current of steam generated in another vessel. The still is heated either by means of a steam jacket or by means of a closed steam coil. In this way the distillation may be effected at any desired temperature and pressure, and it is thus possible in the case of very delicate perfumes to separate the oils with less injury to their fragrance, by means of distillation at less than atmospheric pressure.

The distillate, whichever process is used, consists of a mixture of water and the essential oil. In most cases the latter is lighter than the water, and therefore rises to the surface in an oily layer, which is subsequently skimmed off and filtered.

Another method of separating oils, which is only applicable when the substance contains a large proportion of oil, is by means of expression either by hand or by machinery. This method is chiefly used in obtaining the oil from the peel of lemons, limes, oranges, and similar soft material rich in essential oil.

The fruit is cut into halves or quarters, and the adhering acid pulp removed. The portions of rind are then either squeezed against a sponge held in the right hand of the workman, or in the cases of halves are pressed against it and rotated. In this way the small cells in which the essential oil is secreted are broken, and as the oil exudes it is absorbed by the sponge. When the latter becomes saturated the oil is squeezed out into a receptacle,
In the West Indies, where lime oil is made on a large scale, the portions of rind are drawn across upright brass needles fixed in the bottom of a bowl, or the whole fruit is gently rolled over the points. The oil cells are thus pricked by the needles, and the oil flows out and accumulates at the bottom of the bowl.

The "expression" and "pricking" processes do not remove the whole of the oil from the rind, and the rest may be obtained by distillation with steam. The distilled products, however, are of inferior quality and fetch lower prices in the market.

In addition to these, a third method is also employed, especially in cases where the delicacy of a perfume is likely to be injured by long-continued contact with steam. The flowers or other parts of the plant are macerated with a solvent, such as alcohol or petroleum spirit, that will take up the essential oil. The extract is separated from the residual plant-substance, and the solvent separated from the essential oil by evaporation at a low temperature.

The French process of "enfleurage" embodies a similar principle. The freshly-picked flowers are heated and stirred for several hours with a pure neutral fat, such as olive oil or lard, which extracts all trace of perfume from them. The fat is then strained off, and the essential oil separated from it by extraction with alcohol, which, in turn, must be expelled by evaporation at as low a temperature as possible.

The delicacy of the scent depends largely upon the length of time during which the heated oil was in contact with the flowers, and in the preparation of some of the most highly-prized perfumes the extraction of the oil from the flowers is, therefore, effected by means of cold neutral lard. The process, however, is both tedious and costly.
A method of extraction occasionally employed in the preparation of the coarser kinds of perfumes consists in conducting a current of hot moist air through a vessel containing the flowers. The air, bearing with it the vaporised essential oil, is next passed through a suitable solvent, such as carbon bisulphide, which will retain the oil, and allow the air thus deodorised to escape.

Properties.—As a rule the essential oils, obtained by one of the methods described, will be mobile liquids, with a strong refractive action upon light. Some oils, however, such as rose oil, are semi-solid at the ordinary temperature, and others, again, are solid substances which melt when gently heated.

They may be colourless, or range in colour from pale yellow to greenish brown or dark brown. Usually they are inflammable and burn, like turpentine, with a smoky flame. The majority of essential oils are lighter than water, but some, of which oil of cloves and oil of cassia may be cited as examples, are heavier than water.

When exposed to the air they frequently undergo changes, probably caused by atmospheric oxidation, and deteriorate in quality. Lemon oil, for instance, gradually loses its fresh aroma and acquires an odour recalling that of turpentine.

To prevent such alterations it is necessary to keep essential oils in tightly-sealed vessels and in the dark.

Volatile oils are nearly insoluble in water, but dissolve readily in certain solvents such as alcohol and petroleum spirit.

Soluble Essences.—The commercial products sold under this name usually consist of an essential oil dissolved in alcohol or other solvent, or in a mixture of alcohol and glycerin. An aqueous liquid, such as lemonade, when mixed with such a preparation is able
By 'permission' of Messrs. Schimmel & Co.

A MODERN STILL
to dissolve and retain in solution much more of the essential oil than would otherwise be possible.

Composition.—Essential oils show as wide variations in their composition as in their general properties. Exceptionally, as in the case of winter-green oil, they are composed of a single chemical compound in an approximately pure condition, but as a rule they may be regarded as a blend of several constituents, which may be separated from one another by fractional distillation or other means.

Frequently the fragrant odour of the oil is due to one or two only of these constituents, while the others are inactive in this respect. In the case of lemon oil, for instance, the principal odoriferous compound is a substance termed citral, which usually constitutes a little over 5 per cent. of the oil. The remaining 95 per cent., consisting, in the main, of hydrocarbons, called terpenes, apparently does not contribute to the fragrance of the oil.

Terpeneless Oils.—In the commercial preparations known as terpeneless oils, the inert inodorous terpenes have been separated by distillation from the small amount of the active constituents, and the whole fragrance of the original oil is thus concentrated into a small bulk, and intensified by the absence of the other compounds.

Terpeneless oils of lemon, orange and ginger are often used with advantage by mineral water manufacturers, the greater initial cost being more than compensated by the purity of aroma and the greater flavouring power.

Influence of Climatic Conditions.—As in the case of most natural products the composition of essential oils varies considerably under the influence of external conditions such as soil and climate. Thus, the essential
oils derived from certain French plants differ to a marked extent in composition from those obtained from English plants of the same species, and the English varieties when grown in French soil produce an oil which gradually tends to approximate to the type of the French product.

Apart from this, the particular variety of plant, and the stage of growth have also been found to have an influence upon the chemical composition, as well as upon the yield of the oil.

Classification.—Essential oils are usually classified in accordance with the botanical relationships of the plants from which they are derived, but here they may be more conveniently grouped according to the commercial uses to which they are mainly put.

As they are employed as perfumes, flavouring agents, drugs and solvents, it will be readily understood that the number of these products upon the market is very large. In the following pages, therefore, it will only be possible to deal with the most important and typical oils in each class.

It need hardly be mentioned that as in all classifications of natural objects there must inevitably be overlapping, and that some of the oils might be placed in two or even in all of the groups.

Volatile Oils Used in Perfumery

To this group belong all those delicate flower-scents, chiefly obtained by the methods of enfleurage already described; odoriferous oils, such as bergamot, derived from the peel of fruits; oils such as bay oil, from the leaves; or, like orris oil, from the roots or rhizomes; or from other parts of the plant.

The amount of oil secreted by the plants varies very greatly. Thus, from rose leaves only about 0·02 per
cent. may be separated, and not more than a tenth of that quantity from mignonette flowers, whereas from cassia bark more than 1 per cent. of oil may be distilled, from lavender flowers about $1\frac{1}{2}$ per cent., and from santal wood as much as 5 or even 6 per cent.

Rose Oil.—The most prized of all the scents won from flowers is the essential oil of the rose, which is also known commercially as "otto" (a corruption of "attar") of roses. For centuries it has been prepared in Persia and other Eastern countries by a primitive method of distillation, and has been used there as the chief scent in perfumery.

At the present day Bulgaria, "the rose garden of the world," is the chief source of the commercial "otto" of rose; for although considerable quantities are distilled in Persia, India and elsewhere, it is rarely that these kinds find their way to Europe.

Otto of roses is also prepared in Algiers to a limited extent, and by Messrs. Schimmel & Co. from the roses grown in their plantations near Leipzig.

The flower cultivated for the preparation of rose-oil in the Balkans is the red rose, *Rosa damascena*, but a white rose, *R. alba*, is often mixed with it, so as to obtain a product which will melt at a higher temperature, and thus permit of adulteration with geranium oil with less risk of detection by the local test of taking the melting point of the oil.

In the South of France the petals of the "cabbage rose" (*Rosa centifolia*) are distilled to obtain the commercial "rose water," which consists of water or very dilute spirit containing a trace of rose oil in solution. Nearly the whole of the oil prepared in this district, however, with the exception of a small quantity used locally, is utilised in this way or in the manufacture of rose pomade,
The delicacy of the perfume of the oil depends not only upon the variety of the rose, but also upon its being grown in a particular soil and climate. This explains why attempts to produce a good oil from Bulgarian roses grown under different conditions have only been moderately successful, in spite of greatly improved methods of distillation.

The method of obtaining the oil in Bulgaria is still of a very primitive nature. The flowers are picked early in the morning, and, except on dull days, the work ceases before noon, so that the petals shall not be injured by the heat of the sun. They are immediately taken to the distilleries as the quality of the oil suffers from delay in distillation. During the season of 1908, for instance, the stills were unable to keep pace with the large consignments of rose leaves collected, and huge quantities of the leaves were allowed to stand in heaps, and were consequently spoiled.

To remedy this drawback attempts are now being made to introduce modern distillation apparatus, or to extract the oil by means of ether, or some other solvent.

The simple stills that have long been employed for the purpose are copper vessels about 3 feet in height, taking a charge of about 20 gallons of a mixture of the leaves and water. These are heated over small brick furnaces, and the steam and vaporised rose oil pass from the still through a straight or spiral tube contained in a tub, through which runs a constant current of cold water.

The successive distillates of rose water thus obtained are united and redistilled, until the oil is present in sufficient quantity to be drawn off as a layer from the surface of the water. About 3,000 lbs. of rose leaves are required to obtain 1 lb. of rose oil.
“Otto” of roses is almost systematically adulterated, especially with the cheaper geranium oil, and it is sometimes by no means an easy task to detect the fraud, owing to natural variations in the chemical composition of the genuine product. In doubtful cases, reliance has often to be placed upon the judgment of the trained specialist, who bases his conclusions as to the purity of a sample upon its odour.

Geranium Oil.—This finely-scented oil is prepared from the green leaves of several species of *Pelargonium*, which are cultivated for the purpose in Spain, Algiers, Italy and the South of France.

As a rule the whole of the plant is distilled, and occasionally rose petals are also introduced into the still to intensify the natural rose-like odour of the product. The resulting distillate from such mixtures has a fine odour, and is sold as “rose-geranium” oil.

Geranium oil is widely employed in perfumery either by itself or when blended with other oils. It is sometimes used to adulterate “otto” of roses, although the so-called geranium oil systematically used for that purpose in Bulgaria is the “Indian geranium oil” (also known as “Turkish geranium oil” and “Palmarosa oil”). This is distilled in India from a species of grass, *Andropogon Schoenanthus*, and is much inferior in odour and consequently cheaper than true geranium oil, which therefore frequently contains it as an adulterant. By itself it is used as the basis of cheap coarse scents.

Lavender Oil.—Various species of lavender are used in the preparation of the commercial essential oil, but by far the largest proportion is obtained from the flowers of *Lavandula vera*, which grows abundantly in sunny stony localities in the countries bordering on the Mediterranean, and is also cultivated in various parts of France, in Italy, and even as far north as Norway.
The lavender that was used in classical times by the Romans as a perfume for the bath was probably *Lavandula Stoechas*, a shrub producing dark purple blossoms with an odour more akin to rosemary than to ordinary lavender. The flowers of this species were used medicinally in England until about the middle of the eighteenth century.

Decoctions of the flowers of the ordinary lavender were also used as drugs in Wales as far back as the thirteenth century, and the oil has always been official in the London and British Pharmacopoeias.

According to Culpepper's old herbal (1782), "Lavender is of special good use for all the griefs and pains of the head and brain that proceed from a cold cause . . . but the chymical oil drawn from Lavender is of so fierce and piercing a quality that it is cautiously to be used either for inward or outward griefs." Now, it is chiefly as a flavouring agent that it finds its use in medicine.

In the South of Europe a large export trade is still carried on in the dry lavender blossoms, but in this country the plant is now almost exclusively cultivated for its oil.

The principal English lavender plantations are at Carshalton in Surrey, at Hitchin in Hertfordshire, and near Canterbury. The cultivation of the plant has for many years been discontinued at Mitcham, although some of the oil is still distilled in the neighbourhood, and the finest products continue to be described as "Mitcham lavender oil."

The flowers are gathered early in August, and are distilled as soon as possible afterwards. The early method of distillation in wide-bottomed copper stills over a direct source of heat, as described above, is still in common use, and although distillation in a current
of steam would give many advantages over this method it could hardly produce a finer product.

In making the most refined lavender oil the blossoms are carefully separated by hand from the stalks, and this necessarily adds several shillings per ounce to the cost. The oil in the stalks has a much coarser odour, and is less volatile than the flower oil. Hence the better grades of lavender oil are those separated during the earlier stages of the distillation. Where the entire plant is distilled, the product is inferior in odour and fetches a lower price.

The proportion of oil yielded by the flower varies greatly with the kind of season, and cold dull weather during the early blossoming period greatly reduces its amount. As a rule an acre of lavender should produce about 20 lbs. of oil, though after a specially good season the amount may reach 30 lbs. On an average the flowers will contain about \(\frac{1}{2} \) per cent. of essential oil.

Lavender, which grows wild or is cultivated in the South of France, is distilled near Montpellier and in other places, but the French oil has never been able to compete in the market with the English product, which frequently fetches ten times the price.

The cause of this difference appears to be due to the influence of soil and climate upon the composition of the essential oil in the plant. All attempts to acclimatize the English lavender upon French soil have been unsuccessful in this respect, for the plants gradually acquired the characteristics of the French lavender, and produced a similar oil. On the other hand, French lavender transplanted to English soil soon adapts itself to the new conditions, and yields an oil with the same composition and delicacy of odour as the English plant.

Lavender oil is only soluble in traces in water, and the so-called "lavender water" now consists in reality
of a solution of the oil in dilute rectified spirit of wine, the scent being sometimes modified by the addition of rose oil or oil of bergamot.

In addition to the fraudulent substitution of French oil for English oil, which may sometimes be detected by a determination of the chemical composition, lavender oil is also frequently adulterated with turpentine and with spike oil. Chemical and physical tests are used in the detection of these adulterants.

Spike Oil.—An essential oil, which is sold under the name of "spike oil" or "spike lavender-oil," is distilled from the flowers of the spike lavender, *Lavendula spica*, a plant growing in the same districts as the true lavender. Its odour is coarser than that of lavender, and somewhat recalls the odour of rosemary.

Spike oil is a common ingredient of the cheaper kinds of scent, and is also frequently used to adulterate lavender oil, while in turn it is itself adulterated with turpentine oil.

Rosemary Oil.—The flowers of the well-known shrub, rosemary (*Rosmarinus officinalis*), yield an essential oil, which is extensively used in conjunction with other oils in the manufacture of various scents, including *Eau de Cologne*, and is also employed to a limited extent for scenting ointments and other pharmaceutical preparations.

The oil is separated from the freshly-gathered flowers in the same way as lavender oil, similar care being taken to exclude the stalks in the preparation of the finest grades.

Only a very small proportion of the commercial oil is distilled in England, the bulk being derived from the South of France, and from the islands off the Dalmatian coast. The odour of the Dalmatian product, which through being imported by way of Trieste is known in
commerce as *Italian rosemary oil*, is greatly inferior to that of the French oil. This is possibly due in part to climatic difference, but is also probably largely the result of the use of very primitive stills, and want of care in the distillation.

The odour of rosemary oil is strong and penetrating, and resembles that of the plant blended with camphor. By suitable treatment a solid constituent termed *rosemary camphor* may be separated from the oil.

Rosemary oil is commonly adulterated with turpentine and petroleum oils, and the finest sorts are sometimes cheapened by an addition of spike oil. As the production of the Dalmatian oil is under municipal control the chief adulteration of this kind of oil probably takes place after it has left the islands.

Neroli Oil.—The flowers of the sweet and bitter orange yield, on distillation with water, essential oils which differ both in odour and in composition from the oil contained in the peel of the fruit.

In commerce a distinction is drawn between the oil obtained from the flowers of the bitter orange tree (*Oil of Neroli, Bigarade*), and that derived from sweet orange flowers (*Oil of Neroli, Portugal*), the former being the more fragrant and fetching about twice as much in the market. Hence it is not an uncommon practice for the two oils to be mixed, and sold as bigarade neroli oil.

Most of the oil in the market is prepared in the South of France. The flowers are collected, usually in the month of May, and the petals mixed with water and distilled in a still heated by means of a steam coil. The essential oil rising to the surface of the distillate is drawn off, while the aqueous portion is sold as "orange-flower water."

Neroli oil is in considerable demand for the manufacture of perfumes, and is worth about 5s. to 10s. per
A ROSE HARVEST
oz., according to its origin. Adulteration with ordinary oil of orange is very common, and is not easily detected. *Oil of Petits Grains* is also frequently added as an adulterant.

Oil of Petits Grains.—This oil was originally derived from the seeds of the sweet and bitter orange tree, but is now almost entirely obtained by distilling the young shoots and leaves of the trees. Its odour is less delicate than that of neroli oil, to which it is frequently added as an adulterant. It is used in the manufacture of *Eau de Cologne* and other scents.

Lemon Grass Oil.—This oil is prepared, chiefly by native methods of distillation, from the grass of that name (*Andropogon citratus*), which grows extensively in different parts of India, Ceylon, and the West Indies.

It is a yellow or yellowish-brown mobile liquid, with an odour resembling that of verbena, whence the oil is sometimes described as *oil of Indian verbena*. It is largely employed in the manufacture of perfumes and of scented soap, and is also one of the chief sources of the compound citral used in the manufacture of *ionone* or artificial violets.

Apart from these legitimate uses, it is frequently employed to adulterate lemon oil.

Citronella Oil.—The so-called "Indian grass" (*Andropogon nardus*), which covers extensive tracts in Ceylon, yields, on distillation with steam, an essential oil, which owes its name to the fact that it contains a large proportion of the compound citronellal. This oil, being exceedingly cheap, is used in enormous quantities for scenting common soaps, and in the manufacture of coarse scents, and is also added as an adulterant to more expensive oils.

In order to prevent the native workmen from stealing the oil, the distillate issuing from the condensing coil
VOLATILE OILS USED IN PERFUMERY

is conducted into a vessel contained in an underground chamber, the door of which can be kept locked.

Verbena Oil.—Much of the oil sold under this name is really lemon grass oil, which, as was mentioned above, has a pronounced odour of verbena. The chief species of the plant originally used as the source of oil, and still distilled to a limited extent in Grasse, were *Verbena triphylla* and *V. officinalis*. The leaves of the former yield about 0·08 per cent. of a light yellow essential oil, the odour of which is more delicate than that of lemon grass oil.

Allusion has already been made to the variations that take place in the proportion of oil and in its distribution in different parts of the plant during its growth, and to the consequent advantage gained by distilling the leaves before the blossoming period.

Oil of Bay.—The leaves of the bay plant, *Pimenta acris*, which grows in the West Indies, yield, on distillation, from 2 to 3 per cent. of an essential oil with a characteristic aromatic odour. This oil enters into the composition of many commercial perfumes, and, in particular, is the scent-giving constituent of the hairdresser's *bay rum*. The commercial product is liable to be adulterated with oil of cloves and oil of pimento.

Oil of Jasmine.—The oil derived from the blossoms of the jasmine (*Jasminum grandiflorum*) is usually sold in the form of the *jasmine pomade* prepared by the method of *enfleurage*. The oil in the flowers is present in so minute a quantity and is so volatile, that the ordinary distillation methods of separation are unsatisfactory and expensive.

In the South of France, however, a small amount of the oil is prepared by extracting the blossoms with petroleum spirit, and evaporating the solvent at a low temperature.
The yield of oil thus obtained is only about one-ninth of that extracted by fats in the *enfleurage* process, and on these facts a theory has been based, that in flowers such as the jasmine and the tuberose, there is a constant formation and volatilisation of the perfume, whereas in flowers such as the rose a large proportion of the essential oil accumulates in a ready-formed condition in the cells. Hence on treating the petals of the jasmine with moist fat the cells are not immediately killed, and the process of scent-formation still continues, while distillation or treatment with petroleum spirit immediately inhibits this vital process. This theory has been called in question by several critics, who suggest that the smaller yield may also be explained by the fact that petroleum spirit extracts less essential oil than fat, and that in the evaporation of the solvent there is inevitable loss of the oil.

The jasmine oil obtained by the extraction method is a pale brown mobile liquid with a pleasant odour, which is quite distinct, however, from that of jasmine pomade.

Alcoholic extracts of the pomade are used in the preparation of scents, their chief value being to give freshness to mixtures of other perfumes which lack that quality.

The essential oils of the *tuberose*, *jonquil*, *hyacinth*, *violet*, etc., are, like oil of jasmine, chiefly known in the form of pomades obtained by *enfleurage*, or in alcoholic extracts of those pomades.

Oil of Orris.—In Tuscany and other parts of Italy large areas are given over to the cultivation of three species of *iris*, *Iris florentina*, *I. germanica*, and *I. pallida*, the roots of which when dried and powdered have a delicate odour of violets, and are widely used in the preparation of the *violet powders* of commerce.
These plants are also cultivated in other parts of Europe, in Morocco, India, etc., but Italy is still the chief source of supply.

The so-called *Florentine orris*, by which in commerce is understood the roots of all three species, derives its name from being grown in the neighbourhood of Florence, and is the most valued. The roots grown near Verona are also held in high repute, especially in the United States. Of late years, however, the cultivation at Verona has steadily declined, owing to the low prices resulting from over-production of orris root in other places, and the increasing manufacture of artificial violet perfume from lemon grass oil. Thus, in 1905, the annual output, which only a few years before had been 600 tons, had fallen to 80 tons.

The fragrant violet odour of orris is not perceptible in the freshly-gathered roots, but gradually develops in them after drying, probably through some chemical process analogous to that which takes place in the development of the odour in oil of almonds.

The earliest *essences of violets* consisted of alcoholic extracts of the powdered root, but as these also contained inert substances simultaneously extracted from the root, they lacked the purity of odour of a solution of the essential oil.

The substance obtained by distilling powdered orris root with steam consists of a semi-solid mixture of the essential oil and fatty constituents of the root carried over mechanically. By subsequent treatment the solid inert parts may be separated, leaving a liquid volatile oil in which is concentrated the violet-scented constituents of the root. This product has an intense and extremely delicate odour of the fresh violet and fetches a high price in the market. It is used commercially in the preparation of the finest scents, and is also
blended with artificial violet perfumes prepared from lemon grass oil, the odour of which it renders more subtle.

Costus Oil.—Another essential oil, with a delicate perfume resembling that of violets, is that distilled from the roots of *Aplotaxis Lappa*, which grows in India, and is sold under the commercial name of *costus oil*. It is used for the most expensive kinds of perfumes, and fetches nearly as much in the market as fine oil of orris. When kept, its odour may become unpleasant, but a secret process has been devised by Messrs. Schimmel & Co. to prevent this change, which is probably the result of atmospheric oxidation.

Patchouli Oil.—The essential oil sold under this name has a characteristic persistent odour, and is now chiefly used in the preparation of the coarsest kinds of scent. It is derived from the dried leaves of *Pogostemon patchouli*, a plant which is cultivated in the Straits Settlements, in Java, Mauritius, and in other parts of the East.

Formerly the whole of the commercial oil was distilled by the natives, and a considerable quantity is still separated on the spot; but, owing to the systematic adulteration, most of the oil now sold is distilled in Europe from imported leaves.

The colour of the distilled oil ranges from dark yellow to greenish brown or brown, the differences being probably due to climatic influences upon the plant.

Many of the oils yield, on re-distillation, bright blue distillates, owing to the formation of a blue compound, "azulene," during the process. A substance termed *patchoulene*, with a strong cedar-like odour, has been separated from the oil.

Patchouli oil is frequently adulterated with cedar
wood oil and oil of cubebs, and occasionally with turpentine.

Cassia Oil.—The leaves and green twigs of the cassia plant (*Cinnamomum cassia*), the bark of which furnishes the well-known spice, contain over a half per cent. of essential oil, which is separated by the most primitive methods in Chinese distilleries. The plant is also cultivated in India, the East Indies, and the Philippine Islands, but the production of the oil is also exclusively in the hands of the Chinese.

The leaves and green shoots used for the distillation are stripped from the shrubs during the summer, and boiled with water in large iron vessels. The resulting aromatic decoction is then distilled to separate the essential oil from the aqueous portion.

The greatest secrecy is maintained by the Chinese on the subject of the cassia plantations and stills, and every obstacle is placed in the way of Europeans who wish to gain information about them. An interesting description of the difficulties encountered by the representatives of a German firm in Hong-Kong, and of the way in which they overcame them is given in one of the reports of Messrs. Schimmel & Co., the well-known distillers of essential oils.

The still which is used in the numerous small distilleries consists of an iron pan fixed over a square brick fireplace. On this pan rests a wooden cylinder lined with iron, and the joint between the two is tightly closed with wedges of moistened cloth. Round the outside of this cover near the bottom runs a hollow groove which is kept filled with cold water to condense the vaporised oil, and the latter falls into another narrow groove within the cover, and is then conducted by a tube into a series of tin cans placed at a level below the still. The principle employed is thus identical with that
utilised in the modern "Gem" still, for obtaining distilled water over an ordinary fire.

The oil derived from the leaves is greater in quantity and of better quality than that yielded by the mixed leaves and twigs. The bark used as the spice contains about twice as much essential oil as the leaves, but is too valuable to be used for this purpose.

The oil thus obtained is packed in tins and sent to Hong-Kong for exportation to Europe. The residual twigs and leaves from which the oil has been removed are dried and used for fuel.

Pure oil of cassia leaves is a heavy fluid with a sweet taste and an aromatic odour of cinnamon, the oil of which it is therefore sometimes used to adulterate.

The commercial product is systematically adulterated by the Chinese, various resins, including colophony, castor oil and petroleum oil being among the substances used for the purpose.

The chief commercial use of the oil is in the perfumery industry.

Cinnamon Oil.—The true oil of cinnamon is obtained from the bark of the spice plant, *Cinnamomum zeylanicum*, which grows in India, the West Indies, and many other places in the East, but is chiefly cultivated in Ceylon. Most of the bark is too valuable as a spice to be used for this purpose, and the oil is therefore distilled from broken fragments and chips of the poorer qualities of bark. These pieces are soaked in brine for a few days before distillation to loosen the ligneous tissue, and are distilled in native stills, a yield of a little less than one per cent. of oil being eventually obtained.

Cinnamon oil is slightly heavier than water, and has a characteristic delicate aroma of the spice. It is largely employed in the manufacture of scents and as a flavouring agent, and is also an official drug in the British
Pharmacopoeia. It is liable to be adulterated with cassia oil, which has a similar but more pungent odour. Clove oil and the oil distilled from the leaves of the cinnamon plant are also used as adulterants of cinnamon oil.

Cinnamon Leaf Oil, which is present in the leaves to the extent of about two per cent., is also an important commercial product, being a common constituent of many perfumes. It differs considerably both in composition and odour from the bark oil, and fetches a much lower price in the market. It contains a large proportion of *eugenol*, which is the characteristic constituent of oil of cloves.

Sassafras Oil.—Among the essential oils most extensively used in the manufactures of the coarser descriptions of perfumes, and especially for scenting the cheapest grades of soap, a leading place is taken by the oil distilled from the bark of the roots of the sassafras tree (*Sassafras officinale*). This tree grows extensively in various parts of America, from Virginia to Canada, and in the Southern States often attains a height of 80 to 100 feet.

The roots, the smaller of which give the greater yield of oil, are dug out and distilled by primitive methods of steam distillation, many of the stills being worked by the negroes.

A form of apparatus in common use near Baltimore consists of a wooden tank provided with a perforated false bottom upon which the material is placed, and a copper head connected with a condensing coil immersed in cold water.

Steam under pressure is introduced beneath the false bottom, and passing through the perforations, extracts and carries forward the oil in the root. The condensed products issuing from the coil are conducted to the
bottom of large copper vessels, where they separate into two layers, of which the oil being the heavier is beneath, while the water overflows from the top. A yield of 8 per cent. or more of oil is thus obtained from good roots.

The oil derived from the leaves of the tree differs in composition and odour from the root oil. The latter contains, as its chief active constituent, a substance termed safrol, which is also an important constituent of camphor oil. Large quantities of safrol are now prepared from camphor oil, and used as substitutes for sassafras oil, and, being cheaper than the latter and equally effective as perfuming agents, have had an appreciable effect upon the commercial value of the natural product.

Oil of Veti-Vert.—This oil, which also goes by the name of cuscus oil, is derived from the roots of a species of grass (Andropogon muricatus), which grows extensively in India and the West Indies. In Bengal the grass is termed Khas-Khas, and the English name is obviously a corruption of the native word. The oil has a very pronounced characteristic odour, and is blended with other oils of more delicate aroma, in the manufacture of exquisite scents. It is frequently adulterated with cheaper essential oils, and sometimes with fatty oils.

Bergamot Oil.—This oil is extensively used in perfumery, and to a smaller extent as a flavouring agent. It is obtained by expression from the rind of fruit of a species of Citrus, C. bergamia, the bergamot tree, which is cultivated for this purpose in various localities in Calabria in Southern Italy, and notably near Reggio.

Formerly the process of expression was carried out by hand, as is still done in obtaining the oil from lemon
peel, but this method is now rarely used, its place having been taken by a rapid mechanical method.

In the type of apparatus that has been employed for many years the round fruit is introduced into a saucer-like cavity, the surface of which is covered with radiating knife-edged grooves. The fruit is pressed against these and made to revolve rapidly by means of a close-fitting cover, which is actuated by a cog-wheel. The oil exuding from the ruptured cells falls through perforations in the cavity and collects in a vessel placed underneath.

It is allowed to stand for some time, until the bulk of what is known as *bergamot camphor* has deposited, and is then bottled and exported.

As thus obtained bergamot oil is a limpid fluid, with a pronounced aromatic lemon-like odour, and a yellowish green colour due to dissolved chlorophyll. Rectification of the oil by further distillation will yield a colourless product, but does not increase the fragrant odour.

Inferior grades of oil are prepared by mixing the expressed rinds with the rasped and partially exhausted peel of unripe fruit blown from the trees (termed *Nero of bergamot*), and distilling the mixture. The distillate is frequently added to the expressed oil in order to obtain a cheaper product.

Oils of this type are particularly liable to be met with in commerce after a season in which very hot dry weather follows immediately upon the flowering period. Under such conditions the fruit does not settle properly and immense quantities drop from the trees in an immature condition. This kind of oil differs from ordinary bergamot oil in containing a smaller proportion of the ethers to which the oil owes its aroma, and its odour is therefore inferior. A method of estimating the proportion of ethers is employed in detecting the
substitution of this lower grade of oil for the genuine product.

The chief adulterants of commercial bergamot oil are oil of lemon, oil of orange, turpentine, and fatty oils, the last being readily detected by the adulterated oil leaving a fixed residue on evaporation.

The principal odoriferous constituent of bergamot oil is the ether, linalyl acetate. This is also prepared by synthetical methods, and sold as a competitor of bergamot oil. The price is considerably higher, but it is claimed that the odour of the artificial product is more than proportionately superior to that of the oil.

Terpeneless Oil of Bergamot, in which by separation of the terpenes the odour has been intensified, are also on the market. It is claimed that the aroma of these is three times as strong as that of the ordinary oil.

Ylang-Ylang Oil.—The delicately scented essential oil known as oil of cananga or oil of Ylang-Ylang, a name which signifies "flower of flowers," is obtained from the blossoms of *Cananga odorata*, a tree which grows wild and is extensively cultivated in different parts of South Asia.

The largest proportion of the commercial product is derived from the Philippine Islands, where the climate and soil are particularly suitable to the cultivation of the tree. The flowers are distilled in a very modern type of apparatus in Manila, and a large and increasing export trade in the oil is carried on with the United States and with France.

About 75 lbs. of the flowers are required to produce 1 lb. of the oil, and this fetches from 40 to 55 dollars in the American market.

Ylang-Ylang oil is a strong competitor of otto of roses, and is used in the United States as the basis of some of the most delicate and expensive perfumes. The
supply of the Philippine oil is, as yet, unequal to the demand. A certain proportion of the oil is also obtained from Java, but cannot compete with the Philippine oil in delicacy of aroma. The two oils also appear to differ in constitution, which may be the result either of climatic influences upon the tree or of different methods of distillation.

The commercial oil is not infrequently adulterated with a fatty oil, the result of which addition is to render the oil less soluble in spirits of wine, and to cause it to leave a fixed residue on evaporation.

A synthetical ylang-ylang oil, the odour of which is very similar to that of the natural product, is also used by the manufacturers of perfumery.

Linaloe Oil.—There is some confusion with regard to the nature of the essential oil commercially known as *linaloe* or *lignaloe* oil. The commercial product is not, as its name indicates, distilled from the wood of aloes, but is obtained from the wood of trees belonging to the natural order *Burseraceae*, which are found in Mexico. The wood is distilled on the spot and is also exported and distilled in Europe. It yields about 10 per cent. of a light oil with a fragrant odour somewhat recalling that of bergamot oil.

The wood termed *lignaloe* in Brazil and French Guiana yields, on distillation, an essential oil, which is frequently described as *Essence de bois de rose femelle* to distinguish it from linaloe oil, although it is no more connected with rosewood than it is with aloes, being in fact derived from the wood of a tree belonging to the natural order *Lauraceae*. Its odour is more delicate than that of linaloe oil, and it fetches a considerably higher price in the market.

The confusion between these two oils is still further increased by the fact that a genuine *oil of rosewood* is
also a commercial product. This is obtained from the wood of certain kinds of Convolulaceae growing in the Canary Islands. It is a thick light yellow fluid, with an odour somewhat reminiscent of otto of roses. It is also known as rhodium oil.

Thyme Oil.—Two varieties of thyme oil are distinguished in commerce, viz.: red and white oil of thyme, the latter being the more valuable. Both are obtained by the distillation of the common thyme, *Thymus vulgaris*, the red oil being the first distillate and yielding on rectification the “white” oil.

According to Parry it is probable that the colour of the “red” oils is due to the action of certain constituents (phenols) upon the iron of the stills and condensers.

The oil from another species of thyme, *Thymus serpyllum*, is often mixed with that from *T. vulgaris*. This oil has a somewhat different odour, and the mixed product is less valuable than that derived from the common thyme only.

A large proportion of the commercial supply of oil is distilled in the South of France, and the French oils now fetch a higher price than the Spanish oil of thyme, which, a few years ago, had the greater reputation. The dried plant yields between 2 and 3 per cent. of oil.

Oil of thyme is used in the manufacture of cheap perfumery and for scenting soaps. It is sometimes sold as *origanum oil*, owing to the fact that the essential oils distilled from various species of *Origanum* (*true origanum oil, marjoram oil, sweet marjoram oil*) have a somewhat similar odour and composition, and are very much more expensive.

Oil of turpentine is the most common adulterant of oil of thyme, and another fraudulent practice consists in abstracting a portion of the constituent termed *thymol*, to which the oil mainly owes its value.
It is therefore usual to base commercial transactions upon the proportion of thymol and allied compounds in the oil, and against the best qualities of this oil in the manufacturers' lists will be found statements that they contain from 25 to 30 per cent. of phenols. The thymol abstracted from the oil can be sold separately for a good price.

Oils of similar composition and odour may be distilled from other species of thyme, such as *Thymus camphoratus* and *Thymus capitatus*, while a variety termed *T. citratus* yields an essential oil with an aroma more like that of lemon thyme than that of ordinary thyme.

Oil of Myrrh.—Myrrh is the dried juice that exudes from the bark of several species of shrubs of the genus *Commiphora*, which grow wild and are also cultivated in various localities bordering on the Red Sea, and especially in Arabia and Somaliland. On distillation this gum yields a thick oil of a yellowish green colour and with a strong aroma of myrrh. The distilled oil is mentioned in the drug ordinances of Frankfurt of 1587.

Bisabol oil of myrrh, which is distilled from the bisabol myrrh, *Commiphora kafal*, grown in Somaliland, has a different odour from that of ordinary myrrh oil.

Opoponax Oil.—The oil of opoponax now sold is stated by Holmes to be identical with bisabol myrrh oil, and is not, as its name indicates, any longer derived from the plant *Opoponax chironium*. The myrrh resin yields on distillation from 6 to 10 per cent. of a greenish-yellow oil, with a fragrant odour of balsam.

Frankincense Oil.—This oil, also known as *Olibanum oil*, is derived from the gum resins of *Boswellia* plants, the yield being on distillation with steam from 3 to 8 per cent. This oil is also mentioned in the Frankfurt drug ordinances of 1587 under the name of *oleum thuris*.

5—(1464)
It is a colourless or pale yellow fluid with a fragrant balsamic aroma.

Artificial Perfumes.—If we except the manufacture of aniline dyes from coal tar, there is perhaps no industry in which chemical research has succeeded in producing so many synthetical compounds that would compete more or less satisfactorily with the natural products than has the manufacture of artificial perfumes. Long years of laborious work in isolating the individual constituents of different essential oils and ascertaining to which of them the characteristic odour of each oil was due have justified the attempts to isolate or to build up these compounds from other materials, and in some cases the resemblance has been so close that the artificial perfume has more or less displaced the natural one.

As was mentioned before, it is only in exceptional cases that an essential oil consists practically of a single constituent in an approximate state of purity, but in the best example of this kind the artificially prepared compound has proved a serious commercial competitor of the natural oil. Formerly oil of wintergreen was distilled in large quantities from the herb Gaultheria procumbens, but the bulk of the commercial oil now sold at a sixth of the cost of the natural product consists only of chemically-prepared methyl salicylate, and for many purposes is quite as effective.

As a rule, however, the problem to be solved has been of a more complex character, for even when the fragrant aroma of a flower or fruit has been traced to certain definite chemical compounds in the essential oils it by no means follows that the other constituents, although apparently inert as regards the odour, do not in fact tend to modify the aroma of the scent-bearing substances with which they are associated. This probably explains
VOLATILE OILS USED IN PERFUMERY

why some of the artificial scents in the market are so much coarser in odour than the natural perfumes.

In other cases the most important odoriferous constituent may have been identified, while other substances which also contribute to the total aroma may have escaped identification, so that the artificial perfume is thus an imperfect blend, which while recalling the odour of the natural product, yet differs materially from it.

*Safrol.—*Perhaps the most successful imitation of one perfume by a substance prepared from another essential oil is to be seen in the compound safrol, which has to a large extent displaced the natural oil of sassafras. As soon as it had been discovered that safrol, the active constituent of sassafras oil, was also an important constituent of oil of camphor, preparations of the latter oil in which the safrol had been concentrated by fractional distillation were put upon the market. These are still sold as substitutes for sassafras oil, but are decidedly inferior in odour, the safrol aroma being masked by the other constituents left in the camphor oil. Subsequently the safrol was separated in a pure state and is now sold under the name of "artificial safrol" in enormous quantities for scenting soaps in which formerly sassafras oil was used. The cost of the artificial perfume is only about a third of that of the genuine essential oil, and is quite as good in its aroma.

Artificial Heliotrope is another synthetical perfume for which safrol also serves as the primary base. On oxidising safrol under suitable conditions it is transformed into a compound termed *heliotropin*, which has a pronounced odour of heliotrope flowers. Most of the numerous heliotrope perfumes on the market consist of alcoholic solutions of this compound blended with other compounds, such as coumarin, vanilllin, or acetanilide.
Coumarin, the scent-bearing constituent of Tonka beans, is a crystalline compound which is obtained commercially by a series of chemical reactions from salicylic acid. It has the strong aromatic odour of the bean, and is used, generally in admixture with other compounds, in producing various artificial scents such as new-mown hay.

Vanillin, the compound to which the vanilla pod owes its fragrance, is a substance which crystallises in minute white needles. It can be prepared from various compounds, but the chief source of the commercial product is eugenol, the principal constituent of oil of cloves. Vanillin is extensively employed for blending with other scents in perfumery, but its chief use is to give a vanilla flavour to confectionery. When first prepared in 1876 it was quoted at £160 per lb., but owing to improved and cheaper methods of manufacture and the stress of competition, its price has steadily fallen, until at the present time it can be bought at 16s. per oz.

Artificial Lilac usually contains as its main constituent the compound terpineol, which is prepared by various chemical methods from ordinary oil of turpentine. The pure substance has a delicate odour of lilac and when blended with other compounds can also be used in the production of hyacinth and other flower scents.

Bergamio, the commercial substitute for bergamot oil, is the name given to the chemical compound linalyl acetate, to which the odour of the natural oil is mainly due. It is prepared synthetically by the interaction of linalol and acetic acid.

Neroli.—In preparing scents the odour of which in the flower is made up of several constituents, as in the case of neroli oil, mixtures of several compounds are blended together to imitate as far as possible the composition of the natural product. Obviously it is much more
difficult to prepare a passable perfume of this type than one in which the aroma is inherent in a single substance, since every variation in the proportions of the several ingredients has its influence upon the odour. The delicacy of aroma also depends upon the purity of the compounds, and hence a good synthetical oil of neroli costs at least a third of the price of the genuine oil.

Artificial Rose Oils are, at best, only poor imitations of genuine "otto" of roses. They are generally made up from the two chief constituents of the natural oil—geraniol and citronellol—separated from cheaper essential oils. They lack the delicacy of the rose perfume, and it is not an uncommon practice to add to them a trace of the genuine "otto" of roses to mask the deficiency.

Artificial Violet.—The most valuable of all the synthetical perfumes are probably those compounds which are now extensively used as substitutes for the scarce and expensive oil of violets. They were first prepared commercially in 1893 by Tiemann, who took out a patent for the manufacture of a compound termed ionone, having the odour of violets, and prepared by a series of chemical reactions from citral. As has been mentioned, a cheap supply of citral is available in lemon-grass oil, and the demand for it has enormously stimulated the production of that oil.

In its pure and concentrated state ionone has not a violet odour, but this is developed to a pronounced extent when the substance is dissolved in dilute alcohol. For this reason ionone, of which large quantities are manufactured by Messrs. Schimmel & Co., is usually sold in a 10 or 20 per cent. solution in rectified spirits of wine. With reference to complaints occasionally made that ionone has no odour at all or that it even has a disagreeable smell, Messrs. Schimmel & Co. state that this is solely "due to a blunting of the olfactory nerves, or
more correctly to a nasal delusion, which also occurs sometimes in the case of other flower odours, and to which people are known to be particularly liable when smelling freshly-gathered violets.”

“The principal thing in connection with the employment of ionone is to discover its proper degree of dilution. In using it for extracts, powders, etc., the solution must be further diluted and fixed with some orris oil, civet and musk.”

Genuine “otto” of violets from the flowers is worth about 45s. per oz., while a 20 per cent. solution of ionone costs only about 6s. per oz. The artificial perfume has a much more penetrating odour than the natural oil, but in the opinion of most perfumery specialists is inferior in delicacy of aroma.

Artificial Musk.—None of the numerous attempts made to imitate the natural musk, secreted by the musk deer, appear to have met with any measure of commercial success until, in 1889, Baur claimed a process for the manufacture of a nitrated hydrocarbon from toluene, to be used as a musk substitute.

This compound, which is sometimes described as “musk Baur,” is a crystalline substance, which is soluble in alcohol, and, on the addition of a small proportion of ammonia, emits a pronounced odour of musk.

This substitute for the natural scent is employed to a considerable extent for scenting soap and in the manufacture of the coarser grades of perfumes. In the pure crystalline form it is sold at about 10s. a lb.

Artificial Hawthorn.—The oily compound which is sold under the name of Aubépine, is, in chemical nomenclature, anisic aldehyde. It may be obtained either by oxidising aniseed oil or by a more complicated process from phenol (carbolic acid). When purified by distillation it has a very fragrant odour of hawthorn, and
is used as the basis of many of the commercial may blossom scents. It is also blended with other compounds or with natural essential oils to imitate other flower perfumes. When exposed to the air it is gradually oxidised to anisic acid, and it is therefore essential to keep it in tightly-closed bottles, which are also kept filled to exclude air. Otherwise it will become useless for perfumery purposes. Aubépine is sold at the present time at about 25s. per lb., and a crystalline preparation intended for scenting toilet soaps and containing a large proportion of the pure substance, can be obtained at a lower price.

VOLATILE OILS USED AS FLAVOURING AGENTS

The oils that may be classified under this heading include all those used in the manufacture of liqueurs and mineral waters, in confectionery, and for purposes of cooking. Some of them, such as oil of lemon and oil of cloves, are also used to a less extent as drugs, and in perfumery in making compounded scents, and are employed fraudulently to adulterate expensive essential oils from flowers.

Oil of Peppermint.—Peppermint oil is obtained by distillation of the peppermint plant, several species of which are cultivated for the purpose.

In England the medicinal properties of the plant were first recognised about the beginning of the eighteenth century, and it then became an official drug in the London Pharmacopœia.

Two varieties of Mentha piperita are cultivated, the "white" mint more extensively than the "black" mint, since it is believed to yield an oil of more delicate aroma. The principal peppermint fields are near Mitcham, in Surrey, at Hitchin in Hertfordshire, and
near Market Deeping in Lincolnshire. Up to 1805 the distillation was carried out in London, but subsequently was transferred to Mitcham and other localities nearer the peppermint fields.

About the middle of last century the competition of the rising American peppermint industry began to make itself felt, and English peppermint no longer retained its complete control over the market. The English method of distillation is by means of stills provided with false bottoms, upon which the peppermint is placed. Water is also introduced and the still sheathed over a fire.

Peppermint was first distilled in America in Wayne County, New York, by a method similar to that still employed in this country. This method was largely superseded about 1846 by the use of wooden tanks for stills. These vessels are covered with metal heads connected with condensers, and the oil is carried over by a current of steam admitted under pressure.

The chief peppermint areas under cultivation in America are in the States of New York, Indiana, and Michigan, which produces by far the largest proportion of the commercial American oil.

The cultivation of peppermint in Thuringia has gradually declined, but a new industry has sprung up near Leipsic, and this German oil, distilled by the most modern methods, has a very fine aroma and fetches a high price in the market.

A small amount of oil is also distilled in Russia and in Italy, but is consumed in the country of its production.

The chief peppermint-producing country in Asia is Japan, where extensive areas are under cultivation, mainly in the island of Hondo, and especially in the province of Uzen. The plant there cultivated is a variety of Mentha arvensis, which produces an oil
differing both in properties and composition from the English and American oils.

The Japanese apparatus, a description of which has been given by Mr. E. Marx, consists of three iron boilers, A, I, H, on which rest wooden vats, B, with perforated bottoms, on which the peppermint is placed. The steam penetrating through these permeates the herb and carries the volatile oil to the top, where it meets condensers, C, containing water. The condensed product falls into the small suspended cups, K, and the water separating from the oil runs back through the bamboo tubes, L, into the boilers again. When the water in

the condensers, C, becomes hot, it is drawn off by means of a bamboo siphon and replaced by cold water. Should the boilers become overheated the products from the
burning straw with which the fires are fed may find their way into the distillate, and to this may be attributed the peculiar burnt flavour sometimes to be noticed in Japanese peppermint oils.

Peppermint oil is also distilled in China, near Canton, from a variety of the same plant used in Japan.

Apart from differences due to the different species of the plant, the soil and climate have a great influence upon the properties of the essential oil, and the best Mitcham oil is considered so superior in flavour to the American oil distilled from the same plant that it fetches from four to five times the price in the market. The finest Japanese oil is usually sold at about the same price as an average American oil. The differences in flavour of the peppermint oils of different origin are so pronounced that a trained specialist can distinguish between Japanese, American and English oils by their odour and taste.

The American oil may also be distinguished from the other two oils by its smaller solubility in alcohol. In some cases a bluish fluorescent tint is produced, due to a chemical action started by light, and this reduces the value of the American products.

The different oils vary in composition as well as in flavour, and contain different proportions of the characteristic compound menthol, and of ethers. The relative amounts of these constituents are influenced by the stage of growth of the plant, the menthol, which is the more abundant at an early period, gradually decreasing, while the ethers increase, and reach their maximum when the blossoms are formed.

The delicacy of aroma evidently does not depend entirely upon the proportion of menthol, since English oils, which contain about 60 to 70 per cent., are infinitely superior to the Japanese oils, which are particularly
rich in that compound, usually containing from 70 to 80 per cent., and sometimes more.

As menthol is a valuable commercial drug, it is a common practice to remove the whole or a part of it from Japanese peppermint oils by a freezing process, which causes the menthol crystals to separate. The dementholised oils are sold as such at a lower price, or are used to adulterate untreated oils containing a high percentage of menthol. As a rule about 35 per cent. of menthol is left in the commercial "dementholised" peppermint oils. A completely dementholised product has but little commercial value.

Ordinary oil of peppermint is colourless or of a pale yellow colour, and has an aroma that improves on keeping. It is very extensively used in confectionery, in making liqueurs, and in pharmacy.

In addition to the fraudulent abstraction of menthol and the substitution of blends containing foreign oils for English oils, adulteration of peppermint oil with other substances, such as turpentine oil, is not uncommon. Chemical examination will detect the grosser forms of fraud, but in the case of skilfully prepared blends of oils of different origin greater reliance must be placed upon the judgment of the skilled palate.

Spearmint Oil.—The largest proportion of the commercial oil is obtained from America, where it is distilled in the States of New York and Michigan from the herbs *Mentha viridis* or *M. crispa*. The oil is also prepared in Germany and in Russia, but the species of plant yielding the Russian commercial oil is not known. A small amount is distilled at Mitcham, and the English oil is sold at about five times the price of the American product.

Spearmint oil is colourless or greenish-yellow, and has the characteristic odour of the plant. It is used to a
limited extent for flavouring purposes and in perfumery, and is an official drug in the British Pharmacopoeia.

Oil of Cloves.—This important commercial oil is distilled from the unopened blossoms of the clove tree (*Eugenia caryophyllata*), an evergreen plant, originally a native of the Moluccas, but now cultivated in Mauritius, Penang, Madagascar, and especially on the islands of Zanzibar and Pemba, which supply about four-fifths of the world's demand for cloves.

The oil was distilled before the fifteenth century, and is mentioned in the drug ordinances of Berlin of the year 1574.

Most of the commercial oil is distilled from dried Zanzibar cloves, for although the cloves from Réunion are richer in oil they fetch a better price as a spice. Zanzibar cloves yield from 15 to 18 per cent. of oil. A small proportion of oil is also distilled from Amboyna cloves (Moluccas), and being superior in aroma have a considerably higher value for purposes of perfumery than the ordinary oil.

Clove oil is nearly colourless or pale yellow, but darkens on keeping. It has the characteristic aromatic odour of the plant, and a pungent burning taste.

When distilled, part of the distillate, being heavier than water, sinks to the bottom, while the remainder floats on the surface, and these two fractions when united form the oil of commerce.

The chief constituent of clove oil is a substance termed eugenol, and a good sample should contain from 70 to 85 per cent. of this constituent.

The oil distilled from the stems of the plant is of similar composition, but its aroma is not so good as that of clove oil.

The chief uses of oil of cloves are for perfumery, and in the manufacture of liqueurs and aromatic vinegar.
It is also employed to a small extent in pharmacy, and is an official drug in the British Pharmacopœia.

It is liable to be adulterated with oil of turpentine and petroleum oil, with copaiba and gurjun balsams, and with other essential oils such as cedar-wood oil. In addition to these adulterations the eugenol is sometimes fraudulently abstracted and sold for the manufacture of vanillin, and the residual oil passed off as a genuine product. The separated eugenol fetches a higher price in the market than the original oil. All these frauds may be detected by chemical examination, and especially by an estimation of the proportion of eugenol in a given sample.

Pimento Oil.—The small berries of the evergreen plant, Pimenta officinalis, which grows extensively in the West Indies, and especially in Jamaica, are collected before they are ripe and sold as a spice under the name of pimento or allspice. The latter name is obviously due to the odour recalling that of several other spices, though an odour of cloves predominates.

On distillation, the spice gives about 3 to 4 per cent. of a heavy oil of red colour and with the same aroma as the berries. This oil resembles clove oil in containing a high percentage of eugenol, and to this compound it owes the suggestion of cloves in its aroma.

As in the case of clove oil the eugenol and other constituents are sometimes abstracted, leaving a "dephenolised" oil, which is much lighter than the genuine product.

Pimento oil is used in the manufacture of liqueurs and spiced British wines, and is also an official drug in the British Pharmacopœia.

Ginger Oil.—The dried root or rhizome of the ginger plant, Zingiber officinale, which is cultivated in Asia, the West Indies and Africa, yields when distilled about
By permission of Messrs. W. Ransom & Sons, Hinchin

CUTTING PEPPERMINT
3 per cent. of a yellow oil with the well-known pungent aroma.

The oil is used to a considerable extent in the manufacture of ginger wine and liqueurs, though "essences" consisting of alcoholic decoctions of the root are perhaps more frequently employed. A terpeneless oil of ginger is also on the market. The nature of these oils has already been described on a previous page.

The chief adulterant of soluble essences of ginger is an extract of capsicums which gives heat without flavour.

Oil of Lemon.—The main supply of this essential oil is derived from Sicily, Italy, and the South of France. It is contained in the peel of the fruit of the lemon tree, *Citrus limonum*, which is cultivated extensively in Southern Europe, and especially along the coasts of the Mediterranean.

For the most part, the oil is still extracted by hand, and machinery has not been adopted to any extent. There are a few large factories, numerous small ones, and innumerable families of peasants who squeeze the peel of the lemons grown in their own gardens.

The method of extraction used in Sicily and South Italy is the Spugna, or sponge, process. The lemons are cut into slices so that little pulp is left upon the peel. The pulp is pressed and the juice sold to the manufacturers of calcium citrate, which is exported, principally to England, and made into citric acid. The peel is squeezed against a sponge, which when filled with oil is expressed into a large vessel, and subsequently decanted from the aqueous layer and filtered through paper.

In the north of Italy and in the Riviera the oil is separated by the ecuelle process, in which the fruit is rolled about in a vessel studded with points, the oil
exuding from the ruptured cells being collected in a hollow space in the handle of the vessel.

The machinery which has been introduced into some of the Italian factories is constructed on the same principle as the manual extraction. The process is somewhat more rapid, but the oil extracted by machinery has not so good an aroma as that produced by hand.

The oil, by whichever process obtained, is stored and exported in cylindrical copper vessels lined with tin.

The proportion of oil given by the peel varies considerably with the season, the maximum being obtained between November and February, when 1,000 lemons yield from 1 to 2 (Italian) pounds of oil.

The immature fruit yields much less oil, and the quality and aroma of the product are also inferior.

A certain amount of oil of poor quality is also obtained by distillation, the expressed peel and unripe windfalls being used for the purpose. This distilled oil is frequently used to cheapen the genuine oil from fresh fruit.

The trade in lemon oil is in the hands of merchants and manufacturers, the principal market being at Messina. The variation in the composition and characteristics of genuine commercial oils may be attributed to those made in the winter from good lemons being kept separate from those made at other seasons from inferior fruit.

Such factors as the position of the gardens and the kind of season have also an influence upon the nature of the oil.

Oil of lemon is a light liquid of pale yellow colour, and with a strong aroma of lemon. It becomes paler on keeping, and is particularly liable to develop an unpleasant odour when exposed to light and air. For this reason it should be stored in vessels which are filled as full as possible and kept in the dark.
It is composed in the main of two terpenes termed limonenes and of the compound citral, which, as was mentioned before, is the chief constituent of lemon-grass oil. The oil exported from Sicily to England or America is often accompanied by a certificate of analysis stating the percentage of citral in the consignment. This single factor, however, is not a sufficient guarantee of purity, since a suitable addition of lemon-grass oil will increase the proportion of citral in an adulterated oil to the desired extent.

Oil of lemon is extensively used in confectionery, as a flavouring agent in pharmacy, in the manufacture of lemonade, and in perfumery.

A terpeneless oil of lemon is also on the market. This is prepared by distilling off under reduced pressure the greater part of the more volatile constituents (terpenes), and distilling the residue, which consists principally of citral, in a current of steam.

Adulteration of lemon oil is very widespread, and in the case of skilfully prepared blends is exceedingly difficult of detection. Turpentine has long been employed as a favourite adulterant, and the addition of a small proportion of orange oil makes the adulterated oil answer the requirements of the chief optical test.

It is significant that a mixture of 80 per cent. of lemon oil, 15 per cent. of orange oil, and 5 per cent. of turpentine is sold under a special name in Sicily.

Other fraudulent practices in connection with lemon oil are the admixture of old and distilled oils with freshly expressed oil, and the blending of the residual terpenes from the manufacture of terpeneless oils with suitable proportions of lemon-grass oil and turpentine.

Oil of Orange.—The oil extracted from the peel of the sweet orange, commonly termed Essenza di portogallo, is chiefly derived from Calabria and Sicily. It is
extracted by hand in the same manner as oil of lemon.

It has a pronounced yellow colour, and an aromatic but not bitter taste. It consists principally (about 70 per cent.) of limonene, and also contains citral. Its chief adulterants are oils of lemon and turpentine.

The oil from the peel of the bitter orange is known as *Essence d'orange bigarade*. It is not used to any great extent, and according to Fabris is not readily obtained in a pure condition. It is a yellow liquid with a bitter aromatic taste, and a more delicate aroma than the oil of sweet orange.

Both oils are used in confectionery, in the manufacture of liqueurs, and in perfumery. They are also sold in the concentrated form as terpeneless oils, and the waste terpenes from the manufacture are used to adulterate untreated oils.

Oil of Mandarin.—This oil, owing to its high price, is not often obtained pure in commerce. It is expressed from the peel of the fruit in the same manner as the oil of orange or lemon. It is a golden yellow liquid with a slight blue fluorescence, which becomes more pronounced on diluting the oil with alcohol.

Oil of Limes.—The bulk of the commercial oil of limes is obtained from the peel of the lime fruit, *Citrus medica*, var. *acida*, which is extensively grown, for the sake of its juice, in the West Indies, and especially on the island of Montserrat, where the cultivation forms the staple industry.

The method of expressing the juice from the peel has already been described, and a certain amount of an oil of inferior flavour is also prepared by distillation.

The oil of lime prepared in Italy is from the peel of a different fruit, *Citrus limetta*, and is expressed in the same manner as oil of lemon. It differs from the West
Indian oil in aroma, being more akin to bergamot oil, whereas the West Indian oil recalls the odour of lemons. It is commonly known as *limetta* oil, and is employed for flavouring purposes. The West Indian oil is extensively used in the manufacture of mineral waters, and in the preparation of the cheapest grades of lime-juice cordial, some of which contain no lime juice at all, but consist of coloured and sweetened solutions of tartaric acid flavoured with oil of limes.

Adulteration of oil of limes follows the same course as in the case of oil of lemon. Blends of various essential oil, including lemon oil (which is considerably cheaper) and turpentine are added to it, and in the cheapest products distilled oil is substituted for the expressed oil.

Oil of Bitter Almonds.—One of the most widely used flavouring agents is the oil prepared from the kernels of the seeds of the bitter almond tree, *Amygdalus communis*, var. *amara*.

After expression of the fixed oil from the crushed kernels the mass is mixed with water, and under the action of a ferment or enzyme termed *emulsin*, a compound known as *amygdalin*, which is present in the water, is gradually decomposed into benzaldehyde, a sugar, and prussic acid. After soaking for some hours the mass is distilled in a current of steam, great precautions being taken to prevent the poisonous prussic acid escaping into the air.

The oil thus obtained consists principally of benzaldehyde, though it also contains a considerable proportion of prussic acid. In some of the commercial oils, sold at a somewhat higher price, the prussic acid has been removed by chemical processes.

Oil of almonds is a heavy yellow liquid with a pronounced almond-like odour. Oils which are chemically identical with it are prepared from the kernels of apricots.
and peaches, the latter oil usually being sold as foreign oil of almonds.

These oils, being much cheaper, are also fraudulently added to the genuine almond oil, and another common adulterant is artificial benzaldehyde, which is only worth about a seventh of the value. If the added compound has been carefully prepared the fraud can only be detected by a trained sense of smell.

Oil of almonds is also liable to be adulterated with the impure nitrobenzene, which is sold under the name of essence of mirbane for scenting cheap soaps, for which, however, its irritant action upon the skin renders it unsuitable.

The chief uses of almond oil are for flavouring confectionery, in medicine, and in perfumery.

Juniper Oil.—The berries of the common juniper tree (*Juniperus communis*) yield on distillation from 0.5 to 1.5 per cent. of an essential oil. The tree, originally indigenous to Greece, now grows in all parts of Europe, but the berries of the Italian shrub are those most valued and chiefly used for the distillation of the oil.

Juniper berries contain a large proportion of sugar, and decoctions of them are fermented in the manufacture of gin, the characteristic flavour of which is due to the essential oil.

Commercial oil of juniper is used in the preparation of artificial gin, which is little more than an alcoholic solution of the oil, and to a limited extent as a drug.

A so-called juniper wood oil is also on the market. This often consists of turpentine or of the residues obtained in the manufacture of terpeneless oils distilled over juniper berries.

Wormwood Oil.—The herb *Artemisia absinthium* yields, on distillation, from one-fifth to about one per cent. of green or bluish green oil, which is used in the
preparation of absinthe and other liqueurs, whence the oil is often termed oil of absinthe.

The plant is found in the northern countries of Africa, in various localities in Europe and Asia, and is also grown in the United States. The yield of oil obtained on distillation shows great variations with the period of growth, and, as was mentioned on a previous page, it is therefore advisable to gather the herb before blossoming begins.

Wormwood oil is also used to a limited extent in medicine. It is often adulterated with cheaper oils, and especially with turpentine oil, the presence of which may be detected by means of fractional distillation.

Aniseed Oil.—The greater proportion of the commercial aniseed oil is distilled from the star anise (*badiane*), *Illicium verum*, which is cultivated principally in the South of China; but a considerable amount is obtained from the true anise, *Pimpinella anisum*, originally a native of Asia Minor, but now grown in many European countries, notably Russia, in India and in South America.

The oils derived from these two plants have many chemical points of resemblance, both containing as a main constituent the compound anethol. They are also very similar in their odour and other physical properties, but the Russian oil usually fetches a much higher price in the market.

Oil of aniseed is a pale yellow liquid, which is rather lighter than water, and solidifies at a little below the ordinary temperature (60°F.).

It is extensively used in the preparation of liqueurs and cordials, as a drug, and for blending with other oils in perfumery. It is frequently adulterated with petroleum oil and with oil of fennel, the Chinese or star aniseed oil being particularly liable to contain foreign substances,
The main constituent, anethol, is separated and sold as a commercial product, and the residual portion is sometimes used as an adulterant of the genuine oil.

Japanese star anise oil is an oil of quite a different odour from that of aniseed oil. It is distilled in Japan from the leaves of the herb, *Illicium religiosum*, and differs chemically from the other oils.

Volatile Oils Used as Drugs

Reference has been made to the use of many of the oils described in the two preceding classes for pharmaceutical purposes, and several of them are official drugs in the British Pharmacopoeia. From a commercial point of view, however, their medicinal uses are subordinate to their employment as perfuming or flavouring agents, whereas the typical oils described in the present group are almost exclusively used in medicine.

Oil of Camphor.—Camphor and oil of camphor are obtained from the wood of the camphor tree, *Camphora officinalis*, which grows abundantly in Japan and China, and especially in the island of Formosa. The tree has also been planted in Ceylon and Florida, and small quantities of camphor are now derived from both these localities.

The method of collecting the camphor in Florida is of the crudest description, and immense quantities of the trees are destroyed in the process. After the tree has been cut down the smaller branches and twigs are placed in perforated jars covered with earthenware pots, and heated over boiling water. The steam penetrating the chopped-up wood expels the camphor, which is then condensed in crystals in the earthenware covers. On standing, a small proportion of oil separates from the crystalline part, and this is drained off and sold as oil of camphor. The bulk of this product, however, is
obtained by distilling chips of the wood with steam, the distillate consisting of a mixture of camphor and oil of camphor. This is redistilled so as to effect a separation of the two, the distillate then consisting chiefly of the oil, and the residue being camphor.

Strictly speaking, the commercial oil and the crystalline substance are the two fractions of the volatile oil from the wood, the ordinary camphor being analogous to the *stearoptene* which crystallises in rose oil and other vegetable essential oils. In commerce, however, a sharp distinction is made between the two camphor products.

The discovery by Messrs. Schimmel & Co. that safrol is an important constituent of camphor oil, and the use of that compound as a substitute for sassafras oil has given a great impetus to the industry. It is now a common practice for oil of camphor to be freed as completely as possible from safrol before it leaves Japan, and the residual *light camphor oils*, as they are termed, are sold at a much lower price, and are used as substitutes for turpentine oil. The value of oil of camphor thus mainly depends upon the proportion of safrol it contains, and the greater this quantity the heavier the oil.

Eucalyptus Oils.—It is only of recent years that the extensive trade in eucalyptus oils has sprung up, and the rapid growth of the industry is almost entirely due to the reputation that the oils have attained, as deodorants, antiseptics and curative agents generally.

The commercial oils are obtained by distillation of the leaves of numerous species of *Eucalyptus*, the principal supplies being derived from indigenous trees in Australia and from trees grown in plantations in Algeria and the United States.

The British Pharmacopoeia, in which eucalyptus oil is an official drug, prescribes that it shall be the product
of *Eucalyptus globulus* or other species yielding an oil with similar chemical characteristics, and thus excludes the use of oils containing a smaller proportion of *eucalyptol* or *cineol*, or a greater proportion of the inactive constituent *phellandrene*.

It is to the eucalyptol that eucalyptus oil owes its germicidal properties, and hence many of the oils originally imported into this country, although the products of species of eucalyptus, had very little medicinal virtue.

The pure oil of *E. globulus* contains from about 50 to 65 per cent. of eucalyptol, and is regarded as the most valuable of the commercial medicinal oils.

On the other hand, the oil of *Eucalyptus amygdalina*, which was once greatly valued, contains not more than 25 per cent. of eucalyptol, and at the present time fetches only about two-thirds of the price of the *globulus* oil.

A third type of eucalyptus oils include those which have little or no medicinal value, but have a fragrant aroma and are used in perfumery and for scenting soap. Of these mention may be made of *Eucalyptus dealbata* of New South Wales, *E. citriodora*, the oil from which fetches four times as much as the medicinal oils, and *E. odorata*, which yields an odorous oil, used by soap makers in Australia.

The active constituent of the medicinal oils, *eucalyptol*, may easily be separated in a crystalline form, and is now a recognised commercial product, which is sold at about twice the price of the pure oil.

Eucalyptus oil is liable to be adulterated, and the pharmacopoeial oils may be blended with other *Eucalyptus oils* poor in eucalyptol, or with oil from which part of that compound has been extracted.

Cajuput Oil.—This oil resembles eucalyptus oil in
containing a high proportion (about 65 per cent.) of cineol (eucalyptol), and to this must be attributed its value as a therapeutic agent. It is obtained by distillation of the leaves of Melaleuca leucadendron or of M. Minor, shrubs growing abundantly in the Malay peninsula. The commercial oil has a camphor-like odour and is frequently of a green colour, due to the use of copper stills, but redistillation furnishes a colourless product.

Cajuput oil is official in the British Pharmacopoeia. It is sometimes adulterated with turpentine, and is also liable to be sold deprived of part of its original cineol.

Volatile Oils Used as Solvents

Although many of the essential oils are good solvents for resins and other substances, few of them are used commercially for this purpose, since they are more profitably employed in other ways. The volatile oils obtained from the wood and resin of various species of pine and sold as turpentine oils are the chief representatives of this group, although of late years the residual terpenes from the manufacture of terpeneless oils, and the light oils left after abstraction of the safrol from camphor oil have been put to a similar use.

Oil of Turpentine.—Turpentine is a resinous exudation from the wood of trees belonging to the Conifera, or fir family, and consists of a mixture of resin (rosin) and a volatile oil, known commercially as oil of turpentine, turps or terps.

The crude turpentine is collected in the United States, largely by coloured labour. The trees (Pinus australis), locally termed the yellow pine, are subjected to the process of boxing. This consists in cutting a cavity or box a little above the root, and stripping the bark above this so as to form a channel for the exuding juice,
The incisions are made about the middle of March and the flow of turpentine continues until about the end of October. Each box holds from 1½ pints to over half a gallon, and is emptied several times during the season. The deposit left upon the back is known as scraping, and is collected towards the end of the season.

The crude turpentine from the boxes is mixed with about a quarter of its volume of water and distilled in copper stills. The distillate consists of a mixture of water and the essential oil of turpentine, while the residue in the still is the ordinary rosin or colophany of commerce. The oil is drawn off from the surface of the receiver, and is rectified by redistillation with a solution of caustic potash. The resulting product is the commercial rectified oil of turpentine, but to obtain a pure oil for medicinal purposes yet other distillations with water and over calcium chloride are necessary.

Purified oil of turpentine is a colourless limpid liquid with a characteristic odour and a burning taste. It is nearly insoluble in water, but mixes readily with fixed oils, and is itself a good solvent, for the substances used in the manufacture of varnishes. It burns with a dense smoky flame, at a relatively low temperature.

When exposed to the air it becomes yellower and assumes a more resinous character.

The American oil of turpentine, the bulk of which is obtained from the Georgia and "loblolly" pines (P. Australis and P. teda) is regarded as the most valuable of the commercial varieties. The French oil (from P. pinaster) and the German oil (from P. sylvestris and P. picea) are recognised commercial products, which are sold at a lower price.

The Russian and Swedish oils of turpentine, derived from the oleoresin of P. sylvestris and P. ledebourdii, have an unpleasant odour, which reduces their
commercial value. Of late they have been subjected to refining processes to remove this odour, and the resulting products are sold under various names. They differ considerably from American turpentine oil both in physical and chemical characteristics. The Russian oil, in particular, has a much more irritant action upon the skin than the American oil.

The commercial *spruce turpentine*, which is obtained from *P. glabra*, closely resembles the ordinary American product.

In addition to these oils, *wood turpentine* is now prepared on an extensive scale in America, by distillation of the wood and stumps of the spent trees, whence the origin of its local name of "stump spirit." This oil is of much less value than the true *box* oil of turpentine, and is widely used to adulterate the latter. It is not unlikely that the change in the chemical characteristics of American turpentine oil, which has been noticeable during the last few years, is largely due to the common addition of wood turpentine.

Other adulterants of box turpentine oil are the more volatile portions of petroleum oil and mixtures of various terpenes from other essential oils. Various turpentine substitutes consisting of mixtures of this nature are on the market, and are used in paints and varnishes and in the manufacture of floor polishes.
It is strange to reflect for how many ages the world was almost entirely dependent for its artificial light upon crude lamps, in which animal and vegetable oils were burned, or upon tallow or wax candles.

It is true that coal gas had then been introduced into many of the larger towns in Europe, but, for the most part, the houses were still illuminated by the primitive methods that had been in use for centuries.

The poorest class of people had to content themselves with such devices as pine-splint torches, feeble rush lights, or the flickering light from a fire.

Among Eastern nations the crude natural naphtha or petroleum which found its way to the surface through various fissures, or was obtained from shallow wells, had been used from time immemorial for burning in lamps, but the flame was usually smoky and the smell of the burning oil extremely disagreeable. The modern methods of refining petroleum oil so as to remove these drawbacks had not suggested themselves, and the abundant oil supplies in the United States still awaited discovery.

Thus the rise of the modern petroleum industry supplied a need long felt, since it furnished a cheap source of light in remote places where a supply of coal gas or (later) of electricity was not available. It completely displaced the use of the old-fashioned lamp, and enormously reduced the consumption of candles.

At the present time in this country the only vegetable
oil still employed for lighting purposes to any extent is colza oil, which is used for bicycle lamps or to shed a dim light in the carriages on certain railway lines.

The story of the rise and growth of the now gigantic petroleum industry is one of the most fascinating in the history of commercial products.

Origin of Petroleum.—The crude petroleum oil which issues from fissures in oil-bearing strata, or is carried forth by water springs, or is obtained by digging pits or sinking wells, is usually a light yellow or dark-coloured liquid with an unpleasant odour.

Chemically it consists of mixtures of impure compounds of carbon and hydrogen termed *hydrocarbons*, which boil at different temperatures, so that the oil may be separated by distillation into different fractions, the heavier of which are used for lubricating purposes while the lighter are used for oil engines and as lamp oils. To the same class of compounds belong the solid petroleum products (paraffin wax and the like) and the natural gas that accompanies petroleum.

There has long been controversy with regard to the origin of petroleum and the weight of many illustrious names has been given to the opposing theories.

According to the chemical theory, which was propounded by Berthelot, the petroleum hydrocarbons are the result of the direct union of the elements carbon and hydrogen, and this conclusion is supported by the fact that oils of the same kind have been experimentally produced in the laboratory.

There are, however, numerous difficulties in the way of accepting this view, and the organic theory is therefore more generally held. This attributes the formation of the petroleum deposits to the decomposition of animal or vegetable remains, which results in the formation of solid asphaltic or bituminous substances,
By permission of the Baku Petroleum Co.

LORD ROTHSCHILD'S LARGE FOUNTAIN AT BIBI-EIBAT
or liquid petroleum oils or of gases. It is probable that animal life has played a greater part in the petroleum formation than vegetable life; but on this point, too, there is still much controversy, an interesting summary of which is given by MM. Neuburger and Noalhat.

Assuming that petroleum is of organic origin, the differences observed in the natural products would be accounted for by differences in the conditions, such as the degree of pressure, and nature of the strata in which the deposits were formed.

It was at one time believed that petroleum was produced at the same time as coal, and this led to the name of coal oil being given to petroleum oils. Yet, although an oil is obtained by the distillation of coal, it is quite distinct from petroleum oils, and in fact the petroleum deposits all over the world are found in a different class of rocks from those in which coal seams occur. The idea gained ground, however, from the fact that the first great petroleum deposits in the United States were discovered in districts which were already well known as coal-producing areas.

In most localities the oil is found deposited within underlying strata, which consist of porous material, such as sandstone or limestone, and may absorb more than a tenth part of their volume of the oil (Redwood).

The occurrence of pockets in the stratification also plays an important part in the accumulation of the petroleum, since the hollows thus left beneath the contorted shale become filled with oil.

As a rule the oil stored up in these different kinds of natural reservoirs is confined under pressure, which is probably caused by the accompanying gases. Hence, in boring a fresh petroleum well, it is no uncommon sight for a stream of the oil to be flung up into the air, and for a steady flow of thousands of tons to
continue from day to day, until the gas-pressure has been reduced.

The solid petroleum products such as bitumen and asphaltum, which occur as deposits in most parts of the globe, are probably the result of the natural oxidation and partial evaporation of petroleum oil which has found its way to the surface and has remained exposed to the air. The naturally occurring earth wax, commercially known as ozokerite, belongs to the same group of substances.

Similar solid paraffin waxes and pitches are obtained in the refining of crude petroleum oil.

Historical Outline.—Prior to the birth of the American and the Russian petroleum industry the use of the oil was almost entirely restricted to the inhabitants of the productive areas. Petroleum products were certainly known, however, at a very remote period. Thus, bituminous substances were employed by the early Egyptians and Babylonians for making pitch and similar purposes, and numerous references to their use may be found in the Old Testament.

Early Greek and Roman writers make frequent mention of bituminous deposits, and Herodotus (VI, 119), in particular, has an interesting passage describing a black evil-smelling oil which was obtained from wells in Persia.

Certain petroleum wells at Agrimentum are also described by Roman writers, and the oil from these was used there as a lamp oil upwards of 2,000 years ago.

At a later period oil was collected from wells near Modena, and still later, at the beginning of the nineteenth century, Genoa was lighted with lamps burning the crude oil. Some years afterwards a distilled oil is said to have been used for lighting the city of Prague (Redwood).

In other parts of Europe petroleum deposits have long
been utilised locally for lubricating purposes, while the oil discovered in various localities was usually put forward as a valuable medicinal remedy.

The most celebrated ancient wells are those in the region of Baku on the borders of the Caspian Sea. Here the deposits of petroleum occur so abundantly, and there is such a constant emission of the natural gas from fissures in the rocks, that it is easy to imagine how Baku became celebrated for its "eternal fire" and to understand why from times of remote antiquity it was the objective of fire-worshipping pilgrims from Persia and India.

The oil from the Baku springs was also celebrated, and expeditions were made from far-distant lands to secure supplies for burning in the temples at home.

The first attempts to develop the petroleum industry in Baku, however, date to the period when the district was annexed by Russia, about the beginning of the eighteenth century. The wells were then worked more or less systematically, and arrangements were made for the distribution of the oil by boat.

With the restoration of Baku to Persian rule this activity ceased, and it was not until the beginning of the last century, when the Russians again had control of the district, that the industry began to develop. Even then, and for long after the rise of the American petroleum industry, the export trade was neglected, and it is only recently that Baku has adopted modern methods and has become a dangerous competitor of the Americans.

The Chinese and Japanese records show that petroleum oil was known and was used as a lamp oil and for cooking as far back as the sixth century, while in India the working of petroleum springs dates back to the remote past. In Japan the oil is now produced and purified
by the most modern methods, but the industry is still relatively insignificant. Rich deposits are now being worked in various parts of Central and South America, in India and in Burmah, and surface indications show that in South Russia and many other regions of Asia there are hidden supplies of petroleum ready to take the place of the wells of to-day.

The American Industry.—The beginnings of the gigantic American industry attracted scant attention. From time to time attempts had been made to utilise the oil from the natural petroleum springs, but not until the nineteenth century had well advanced were any definite experiments made with it for lighting purposes. It was soon discovered that the crude product burned with a smoky flame and had a nauseous odour, and the oil was again relegated to its former employment as a quack medicine. The following graphic details of the first rush for oil are given by the French writer de Fonvielle (Le Pétrole, Paris, 1888).

About the year 1840 lamp oils were obtained on a commercial scale by the distillation of shale or coal, and were introduced into the American market under the name of Kerosene. The success of these coal oils suggested the possibility of purifying the crude petroleum oil by distillation, and some years later a distilled oil was obtained from petroleum, and found a ready sale. The supply of petroleum oil for this purpose was at first obtained by skimming it from the surface of the liquid in brine pits or wells, but soon afterwards special wells were drilled for the purpose in Pennsylvania. The first company was then promoted, and in 1859 the ingenuity of its engineer, Drake, to whom is due the method of driving an iron pipe through the sands and working the drill through the pipe, solved the problem of obtaining a plentiful supply of oil.
Fast upon the news of Drake’s well came a period of wild excitement and mad speculation. Sites in the neighbourhood of Drake’s well were sold for enormous prices, wells were drilled in every direction, mushroom companies were formed, and enormous fortunes were made and lost in a day. In a few weeks, quiet pastoral scenes were transformed into bustling mining camps, and the calm of ages was broken by the ceaseless din of machinery.

At first the wells were only sunk to the depth of about 80 feet, but in 1861 borings were made to a depth of 400 to 500 feet with the object of obtaining a still greater supply. Thus was discovered the first example of the type of wells which were aptly termed “spouters” or fountains.

The news of this discovery produced an immediate increase of frenzied excitement. In every direction deep borings were made, and in some cases flowing wells yielding thousands of barrels daily were discovered, and soon the output of oil became so plentiful that many of the smaller wells were rendered unprofitable.

In some areas the wells were so quickly exhausted that the districts were abandoned and once more given over to agriculture. Pithole City, for example, which in 1865 had burst into existence as a thriving city of 16,000 inhabitants, had been abandoned by the beginning of 1866, and had completely disappeared a few years later.

But with each fresh discovery of new oil fields there was a similar rush for riches with its usual accompaniment of speculative and fraudulent companies, followed by periods of depression and ruin brought about by over-production and consequent low prices.

Whatever criticisms may be brought against the powerful “trust” organisation controlling the production
and distribution of the oil, and including in its corporation nearly all the principal oil refiners in the United States, its formation has at all events prevented these periodical suspensions of the output of oil.

The Petroleum Well.—Apart from the relatively small amount of oil which exudes to the surface of the earth from the subterranean deposits, the world's supply of petroleum is derived from artificial wells.

The occurrence of oil deposits is often indicated by certain surface signs, such as the formation of oil lakes, but it is largely a matter of chance whether the borings at any given spot within this area will prove successful. Thus, the well may prove not worth the labour of pumping, or it may be a fountain whence at first issue thousands or even millions of gallons of oil a day. Thus, in September, 1909, a fountain was struck in the Maikop fields in South Russia, from which issued a deluge of oil estimated at 30,000 tons in a week.

The modern method of drilling the wells is to sink an iron pipe down to the rock, and then to work the drilling tools within this pipe.

Two methods of drilling are in use—the American system, in which the drill is suspended by a wire rope from a derrick and is actuated by a moving beam worked by an engine, and the Canadian system, in which the drill consists of a series of iron or tough wooden rods ending in a large auger.

In wells of moderate depth the drilling may be finished in less than a month, but in the very deep wells, some of which may go down as far as 4,000 feet, the well may take a year to complete, especially if any accidents happen to the drill, necessitating tedious "fishing" for the broken bits.

A more rapid method of sinking the well is that known as Leschot's method. In this process the drill is made
in the form of a hollow-jointed rod ending in a point of diamond, iridium or hard steel, which when working is kept cool by means of a current of water passing through the inside of the rod and issuing near the crown.

Sometimes in drilling for petroleum the drill strikes upon a supply of the oil confined under pressure, and then, without warning, the tools may be violently flung out of the boring and followed by a dense column of oil shooting two or three hundred feet up into the air and running to waste.

In America the most celebrated of these gushing or flowing wells have been found in Southern oil-fields, but they have been altogether surpassed in magnitude by some of the fountains at Baku.

But, however titanic the initial outburst may be, the supply of oil steadily diminishes, and eventually the well must become dry. This stage may be accelerated by the presence of neighbouring wells, which, drawing their supply from the same strata, tend to starve each other. Hence when once a well has been bored, the work of collecting the oil proceeds as rapidly as possible. Any stoppage means a present of so much oil to the other wells, such as happens with water in the case of adjacent artesian wells in the London area.

With the object of obtaining an increased yield of oil from poor wells, or of promoting the flow of oil in a well that has begun to give a diminished supply, resort is frequently had to the "torpedo." This consists in introducing a heavy charge of nitro-glycerin or other high explosive, and exploding it at the bottom of the well. Immediately after the dull report a stream of water and oil, carrying with it sand and fragments of shattered rock, is flung out of the well, to the height of a hundred feet or more,
This practice results in a quickened flow of oil, and in some cases it may be successfully repeated two or three times during the life of the well.

Even in the case of the most prolific flowing wells the natural outpour of oil ceases sooner or later, and pumps must then be used. The pumping process is often carried out by means of a central engine, which works the pumps in a large number of different wells, a great saving being thus gained over the older method in which each well had its own engine.

During the first quarter of a century after the beginning of the American petroleum industry, the crude oil was pumped into wooden tanks or earthenware reservoirs, and was generally refined in the neighbourhood of the wells. Open trenches for conveying the oil to the storage tanks were in common use, and contributed largely to the outbreak of the destructive fires which were of frequent occurrence in the oil-fields.

At the present time the risk from fire has been enormously reduced by the general adoption of the system of pumping the petroleum into iron receiving tanks. From these it passes by way of controlled valves into surface pipes communicating with a main line underground pipe, which conducts it directly to the refineries at New York, Philadelphia, and other places near the sea-board.

The pumping stations, which are provided with pumps capable of dealing with 30,000 barrels of oil a day, are placed at distances about forty miles apart.

Storage capacity is still essential on the oil-fields, for it frequently happens that the works are unable to deal at once with the huge output of oil from some of the wells. For this purpose there are provided huge iron tanks each capable of receiving hundreds of thousands of gallons of oil, and the area set apart for storage
By permission of the Baku Petroleum Co.

OIL WELL, SHOWING SAND THROWN UP AFTER SECOND DAY'S SPOUTING
may contain many dozens of such tanks. This arrangement enables the work of pumping the well to continue without intermission.

The advantages of pipe lines for the rapid transmission of the crude petroleum for hundreds of miles are so manifest that the system has been adopted in many other oil-fields, and at Baku, in particular, there is now a huge network of pipes to convey the petroleum to the refining factories placed near the points of distribution.

Distillation of Petroleum.—Reference has already been made to the drawbacks that prevented the general use of crude petroleum as a lamp oil, and to the fact that it was found possible to obtain a more satisfactory product by distilling the crude oil and separating the most suitable fractions of the distillate.

Although distillation had frequently been tried upon a small scale long before it was introduced as a commercial process, it was not until 1820 that iron stills were built for the purpose at Baku, and another thirty years passed before distillation suggested itself as a means of rendering American petroleum fit for burning in lamps.

The refined oil first produced in America was put upon the market under the name of "carbon oil." Great quantities of it were distilled in the plant which had originally been erected for the distillation of shale and coal, and the owners of which were threatened with ruin when it was discovered that similar distilled oils could be obtained more cheaply from petroleum (Redwood).

At first these oils found a ready sale, but as they still contained impurities which gave off an objectionable odour when burned, and caused charring of the lamp wick, their advance in popular demand was very slow. From the time, however, that it was found
that refined lamp oils free from these drawbacks could be obtained by subjecting the distillates from the crude petroleum to chemical treatment, the success of the petroleum oil industry was assured.

In the process of refining, the crude oil is first distilled in immense iron cylinders, which are heated by means of fires, and the vaporised products are conducted through long coils of pipes, which are chilled outside by a constant current of cold water. In these pipes the vapours are reconverted into the liquid state, and the distillates issuing from them are collected in different receivers.

As the constituent hydrocarbons in petroleum oil boil at very different temperatures it is possible to effect a separation of the original substance into fractions which differ from one another in density, and in the temperature at which they ignite.

In the intermittent process of distillation the oil is distilled in one still under successively increasing temperatures, while in what is known as the continuous process, the oil is pumped through a series of stills, each of which is heated at a temperature somewhat higher than its preceding neighbour.

The details of the distillation vary according to the nature of the products required. Thus, when a large yield of illuminating oils is desired, the following process is used. After light petroleum oils of the naphtha type have passed over, the temperature is raised, and the distillate, now consisting of illuminating oils, is directed into another receiver. When the bulk of this fraction has been collected the “cracking” process is used. This consists in allowing the next portion of the distillate to fall back into the still, which has meanwhile been heated to a somewhat higher temperature. The denser oils intermediate between
those of the illuminating and lubricating type are in this way decomposed into less dense compounds, which when now allowed to pass into the condenser have the characteristics of oil of the illuminating type.

After as much lamp oil as possible has been obtained, the distillation is stopped, and the residual tar in the still transferred, together with similar tarry residues from other stills, into another still, where the whole is fractionated further into heavy oils, paraffin wax, and a final residue of tar and coke.

In another process, to obtain more lubricating oil, the crude petroleum is distilled in the same way as far as the "cracking" operation, but the distillate is then carried into a second receiver, and not having been decomposed by falling back into the hot still, will consist of denser oils of the lubricating type. Another difference between these two methods is that in order to obtain as large a yield as possible of lubricating oils the distillation is assisted and rendered more regular by the introduction of a current of superheated steam into the still, in addition to the source of heat outside the still. The amount of residue which is left in this process is considerably greater than in the other process, and is subsequently worked up into heavy lubricating oils, paraffin wax, and coke.

In the continuous process of distillation the oil is passed from still to still, each of which, being heated at a constant temperature, furnishes a distillate of constant character. The yield of illuminating oils is smaller than with the intermittent process, but, on the other hand, the greater proportion of residue left in the stills is an advantage, since it fetches a high price as fuel.

Chemical Purification.—Although the distillates obtained by these processes are much better suited for
commercial purposes than the crude oil, they still require much purification before they can be sold.

It is absolutely essential that all sulphur should be eliminated from petroleum distillates, and in some works this is effected by treating them first with sulphuric acid, then with caustic soda, and finally with litharge, which reacts with the sulphur, fixing it as insoluble lead sulphide.

Generally the light fraction, consisting of naphtha, is chemically treated and then redistilled in a steam-heated still, and thus separated into three grades, which are termed "gasoline," "commercial naphtha," and "benzine."

The kerosene fraction from the first distillation also requires considerable purification before it is suitable for burning in lamps, and is therefore treated in a similar manner to the naphtha fraction, and graded into different qualities. The purest of these is almost entirely free from the traces of the tarry and other impurities, which, in an imperfectly purified oil, cause the wick of the lamp to char and emit a disagreeable odour on burning.

The heavier fractions of the first distillation are worked up into lubricating oils. They are purified by chemical treatment and for certain purposes are also bleached and filtered, and the products are graded according to the purposes for which they are required, the lightest oils being known as "spindle oils," and the heaviest consisting of "heavy machine oils."

In addition to the machine oils prepared by distillation, a certain amount of lubricating oil is also made from special kinds of crude petroleum by a process of "sunning," which consists in exposing a light oil to the air in an open vessel, so that as it evaporates spontaneously a denser product is left. This concentration
is also accelerated in some cases by the aid of a slight application of steam, the oils being then termed "reduced" oils.

Finally, the residues left from the last distillation are distilled at a high temperature in steel stills of special construction, the last fractions of the distillate consisting of paraffin wax in a relatively pure condition, while the residue consists of pitch or asphaltum. The wax is freed from water, and then cooled by means of ammonia refrigerators, which cause it to become solid, after which as much of the retained oil as possible is expressed in a filter-press. The solid mass is now melted once more, and decolorised by filtration through animal charcoal, and is finally allowed to crystallise and pressed into compact blocks in a hydraulic press.

The proportion of these different purified products varies considerably with the nature of the crude petroleum and the treatment. Thus, an oil may yield as much as 80 per cent., or as little as 20 per cent. of illuminating oils, while the yields of lubricating oils may range from nothing to about 25 per cent., and that of the coke or asphaltic residues (including waste in working) may be as high as 28 per cent.

Testing Petroleum Products.—The different classes of oils refined by methods such as those described are all subjected to special tests before being put upon the market. In particular it is essential that the kerosene oils intended for lamps shall be free from fractions of the distillate that give off inflammable vapours at a low temperature.

For this purpose what is known as the "flashing-point" is determined. This consists in heating the oil gradually and under constant conditions in a special apparatus in which is a thermometer, and applying a light from time to time to the vapours expelled by the
By permission of the Baku Petroleum Co.

NOBEL'S LAKE AT BALAKHANY ON FIRE
heat. The temperature at which these ignite is the "flashing-point."

The light naphtha fractions, including benzoline and petrol, give off inflammable vapours at very low temperatures, and as these form explosive mixtures with air it will be readily understood how a small proportion of such compounds in lamp oil has been the cause of innumerable fatal accidents.

Prior to the recent rapid development of the motor industry and the consequent demand for petrol, there was less commercial inducement to free the kerosene oils completely from the fractions of lower boiling point, and hence many of the cheaper grades of paraffin oils were dangerous to use. In some countries the flashing-point was legally fixed at temperatures that were barely sufficient to ensure safety, even when lamps of proper construction were used, and oils were frequently put upon the market that were far from giving even this minimum of security against explosion. At the present time the value of the light naphtha fractions is in itself a safeguard, since care is now taken to separate them more effectually from the kerosene fractions, and in consequence cheap illuminating oils are much safer than was the case a few years ago.

The chief requirements, apart from a low flashing-point, of a good lamp oil, are that it shall be free from acid and sulphur, and that it shall be colourless, or nearly so. The presence of acidity, left from the refining process, is objectionable, since it causes charring of the wick in the lamp, while sulphur compounds give off an obnoxious odour when burning. The degree of colour affords a rough indication of the amount of impurities in an oil, and refined oils are classified into various grades, according to their position in the colour scale.
Thus, in the American trade the best product is known as *water-white* kerosene; then comes *prime white* kerosene, and *standard* kerosene, the colour of which is distinctly yellow. These descriptions are also in common use for recognised qualities of oil in this country.

In testing lubricating oils the most important points to be determined are the viscosity and the behaviour under heat and cold. The viscosity, or in other words, the speed at which an oil will run through a small opening, is usually determined in a special apparatus and the result compared with that given by water or by rape oil in the same apparatus and at the same temperature.

The particular temperature at which the test should be made will obviously depend upon the use for which the oil is intended. Thus, a lubricating oil for the cylinders of a marine engine is tested at a very much higher temperature than an oil to be used for lubricating cold machinery.

Another method of testing the mobility of a lubricating oil is to cause a small metal disc to revolve by means of clockwork within the oil, and to count the number of revolutions made in a given time under standard conditions of temperature and driving power.

The flashing-point of engine oils is also a matter of great importance, as it is essential that no inflammable vapours should be given off at temperatures to which the oil would be likely to be subjected during the working of the engine.

Again, since a lubricating oil may be subjected to low temperatures, it is necessary to determine at what point it becomes turbid or congeals. The best qualities of cylinder oil are expected to remain fluid at temperatures between 50 and 60° F. on the one hand, and on the
other hand to be capable of being heated to high temperatures without giving off inflammable vapour.

It is also imperative that lubricating oils should not contain the slightest trace of mineral acid, since otherwise rapid corrosion of the bearings, etc., of machinery may result. The proportion of tarry and coke-like substances in an oil is a further important factor in determining its suitability for certain purposes, e.g., turbines; and methods are now employed to determine the amounts of those substances that would probably be formed in practice. The smaller the proportion of tar and coke formed in an oil after having been exposed for some time at a high temperature, the better the quality of the oil.

In addition to the foregoing tests determinations are made as to the "gumming" tendency of an oil, or in other words, its liability to become viscid and sticky after having been in use for some time. This change is due to the absorption of atmospheric oxygen. Hence the measurement of the rate of absorption of free oxygen affords a useful measure of its "gumming" tendency.

For instance, in a comparative experiment a sample of a mineral lubricating oil absorbed only 0.7 per cent. of oxygen in ten hours at a high temperature, whereas cotton seed oil under the same conditions absorbed 171 times its weight of oxygen, and became so viscid that it would have been useless as a lubricant.

Naphthas.—The light products of distillation at the other end of the scale to the heavy lubricating oils are tested as to their freedom from acidity, and are graded in accordance with their boiling points, and specific gravity. Their ready volatility and power of forming explosive mixtures with air are utilised in driving petrol engines of every description.
Paraffin Wax.—The higher the solidification point of paraffin wax the greater its value for candle-making, and accordingly paraffin waxes are tested and graded in accordance with the temperatures at which they melt and become solid again.

It is commonly accepted that a transparent wax is of better quality than an opaque wax, for manufacturers regard transparency as a proof that the oil has been completely expressed from the wax. This belief, however, is not borne out by experimental results, since it is quite possible for transparent and opaque samples of wax to contain approximately the same amount of oil.

Uses of Petroleum.—In addition to their use as illuminants and for driving and lubricating engines of various kinds, there are many other directions in which petroleum products are of service to mankind.

Thus, in medicine, the semi-solid petroleum derivative known as vaseline, petroleum jelly, etc., meets a long-desired want for a substance that would act as a vehicle for the active drugs in an ointment, while itself remaining relatively unaltered on exposure to the air.

Vaseline and deodorised paraffin oil are also used as the basis of many of the most widely advertised hair restorers. Employed in this way they probably have both a strong antiseptic action upon micro-organisms, while at the same time stimulating the growth of the hair.

It is largely to paraffin oil, also, that Sierra Leone, "the white man's grave," and the haunts of malaria all over the world owe the great improvement that has taken place in their formerly deadly conditions. The discovery that yellow fever and malaria were spread by the bites of particular species of mosquitoes was soon followed by attempts to stamp out the cause by
destroying the mosquitoes while in the larval condition in ponds and stagnant pools.

Wherever it was not found possible to drain away the water, a thin layer of paraffin oil floated upon the surface proved an effectual means of destroying the larvæ.

Another important application of petroleum products is as a source of oil gas, a large proportion of which is derived from the so-called "gas-oils" obtained from the tar-stills. The gas from this source is of the greatest value for illuminating purpose in remote places such as light-ships, and it has also the merit of being readily compressible, and so easy of transport. Oil-gas is now frequently employed for lighting the carriages on railways. It is also added to poor coal-gas to obtain a product richer in illuminating hydrocarbons.

In the kerosene lamps used with incandescent mantles the oil is vaporised by heat and burned with an admixture of air so as to obtain an intensely hot non-luminous flame similar to the blue flame of a Bunsen gas burner. The kerosene vapour burned in these lamps differs from oil gas in the fact that, if cooled, it would become liquid again, whereas oil gas has to be subjected to considerable pressure before it liquefies at the ordinary temperature.

Petroleum products are also being used in increasing quantities for fuel, and being readily handled, as compared with coal, and having a greater heat-producing capacity, they are particularly valuable for marine engines. The extent to which they are utilised for locomotives is shown by the fact that in 1907 the amount of oil consumed on the railroads in the United States was 18,855,691 barrels.

Wherever other kinds of fuel is scarce the use of petroleum fuel has been the greatest boon to industries
of every kind. Thus, on the Baku oil-fields the residues from the still are burned to supply the heat for the distillation of crude oil.

The type of furnace now employed dates from 1865, when it was patented by Aydon Wise and Field. In this the oil is sprayed from a fine jet into the hot furnace, where it meets a supply of air in sufficient quantity to effect its combustion. The discovery of this process and the many mechanical improvements in the methods of admitting the spray of oil have had much to do with the growth in favour of petroleum as a fuel, and at the present time many oil-fields which yield oils of low quality little suited for illuminating purposes are profitably worked owing to the demand for oil as fuel.

The various paraffin waxes, which are now among the most important products of the petroleum industry, are used for many technical purposes. Those of higher melting point are employed in enormous quantities in the manufacture of wax candles, while the softer waxes are used in the preparation of floor polishes and as a neutral basis for ointments. Other uses to which paraffin wax is put include the coating of the interior of barrels, so that the liquid carried in them shall not extract colouring matter from the wood; the preparation of waxed paper; insulation of electric bell wires; the waterproofing of textile fabrics; and innumerable other purposes.

Even the residues in the stills, when not used for fuel as in the Baku oil-fields, are worked up into serviceable products. Thus, chemical treatment of the tarry matter yields pigments of all colours, analogous to those derived from the coal tar of the gas works; while the coke when ground to a fine powder and compressed into sticks is utilised as the carbon for electric arc lamps.

The Future of Petroleum.—Fortunately the time is
still remote when the problem of what is to take the place of petroleum products will become an urgent question, but it is none the less surely approaching. Whereas, in the case of vegetable and animal oils the supply is inexhaustible so long as life continues on the earth, the petroleum deposits on the other hand, were formed in ages past, and when once used up are not replaceable.

The history of the dead cities of the American oil fields pictured by de Fonvielle is a striking example of the sudden manner in which an abundant supply of oil may fail, and there can be no doubt that the same exhaustion awaits even the most prolific oil-fields of to-day.

Before the time of oil famine comes, however, there are vast deposits to be worked all over the world. It is probable that in America the richest deposits have already been tapped, but in Russia there are still immense areas as yet untouched, and it seems not unlikely that within a few generations the world's supply of petroleum products will be mainly drawn from the undeveloped oil-fields of Asia.

With the failure of the great oil centres of to-day, the numerous less important oil-producing districts in India, Canada, South America, Africa and other parts of the globe will receive more attention from the capitalists, and wells in the older areas that have been abandoned owing to their scanty supply of oil will again be worked.

As to what will be done when the final period of exhaustion arrives, as it inevitably must, we can only hazard a guess. But whatever means may be discovered of filling the gap left by the failure of petroleum, it is unlikely that the world will ever again enjoy the use of a substance that may be utilised in so many directions.
APPENDIX

THE TRADE IN OIL
APPENDIX

THE TRADE IN OIL

Some idea of the magnitude of the trade that is done in oils may be gathered from the following table, which embodies figures published by the Board of Trade of the quantities annually imported into this country during the years 1898 to 1908.

<table>
<thead>
<tr>
<th>Description of Oils.</th>
<th>1898</th>
<th>1899</th>
<th>1900</th>
<th>1901</th>
<th>1902</th>
<th>1903</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal</td>
<td>56,723</td>
<td>54,273</td>
<td>108,892</td>
<td>91,870</td>
<td>70,329</td>
<td>168,139</td>
</tr>
<tr>
<td>Castor</td>
<td>125,800</td>
<td>118,052</td>
<td>53,335</td>
<td>107,297</td>
<td>122,843</td>
<td>92,137</td>
</tr>
<tr>
<td>Cocoanut</td>
<td>307,101</td>
<td>458,297</td>
<td>552,743</td>
<td>478,143</td>
<td>495,860</td>
<td>782,632</td>
</tr>
<tr>
<td>Chemical, Essential and Perfumery</td>
<td>1,893,405</td>
<td>1,620,234</td>
<td>1,758,331</td>
<td>1,941,207</td>
<td>1,772,688</td>
<td>1,424,046</td>
</tr>
<tr>
<td>Fish</td>
<td>20,673</td>
<td>20,358</td>
<td>21,323</td>
<td>24,384</td>
<td>23,470</td>
<td>22,141</td>
</tr>
<tr>
<td>Olive</td>
<td>18,044</td>
<td>15,939</td>
<td>12,044</td>
<td>15,488</td>
<td>18,978</td>
<td>14,485</td>
</tr>
<tr>
<td>Palm</td>
<td>910,900</td>
<td>945,472</td>
<td>938,350</td>
<td>1,212,111</td>
<td>1,446,298</td>
<td>1,234,004</td>
</tr>
<tr>
<td>Petroleum, Lubricating galls.</td>
<td>38,880,752</td>
<td>44,356,789</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Illuminating (Lamp)"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,713,195</td>
</tr>
<tr>
<td>"Spirit"</td>
<td>219,249,539</td>
<td>203,521,374</td>
<td>215,268,480</td>
<td>217,209,601</td>
<td>245,928,958</td>
<td>9,902,545</td>
</tr>
<tr>
<td>"Gas"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,361,181</td>
</tr>
<tr>
<td>"Fuel and Other Kinds"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,616,165</td>
</tr>
<tr>
<td>Seed Oils</td>
<td>35,923</td>
<td>46,416</td>
<td>41,131</td>
<td>48,842</td>
<td>35,454</td>
<td>36,011</td>
</tr>
<tr>
<td>Turpentine</td>
<td>573,089</td>
<td>495,808</td>
<td>595,489</td>
<td>643,846</td>
<td>532,455</td>
<td>533,109</td>
</tr>
<tr>
<td>Description of Oils</td>
<td>1904</td>
<td>1905</td>
<td>1906</td>
<td>1907</td>
<td>1908</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>Animal</td>
<td>210,294</td>
<td>238,595</td>
<td>165,659</td>
<td>181,597</td>
<td>150,222</td>
<td></td>
</tr>
<tr>
<td>Castor</td>
<td>60,881</td>
<td>61,787</td>
<td>50,329</td>
<td>50,391</td>
<td>317,741</td>
<td></td>
</tr>
<tr>
<td>Coccoanut</td>
<td>615,238</td>
<td>613,165</td>
<td>335,545</td>
<td>35,781</td>
<td>555,335</td>
<td></td>
</tr>
<tr>
<td>Chemical, Essential</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Perfumery lbs</td>
<td>1,834,421</td>
<td>1,795,396</td>
<td>1,882,080</td>
<td>2,093,198</td>
<td>2,004,737</td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td>24,459</td>
<td>25,508</td>
<td>27,808</td>
<td>26,929</td>
<td>32,137</td>
<td></td>
</tr>
<tr>
<td>Olive</td>
<td>150,101</td>
<td>7,690¹</td>
<td>9,419¹</td>
<td>7,391¹</td>
<td>6,330¹</td>
<td></td>
</tr>
<tr>
<td>Palm</td>
<td>1,309,176</td>
<td>1,144,368</td>
<td>1,223,787</td>
<td>1,508,023</td>
<td>1,317,995</td>
<td></td>
</tr>
<tr>
<td>Petroleum, Lubricating galls</td>
<td>44,833,756</td>
<td>47,524,054</td>
<td>49,704,819</td>
<td>49,529,960</td>
<td>51,672,903</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illuminating (Lamp)</td>
<td>177,550,084</td>
<td>157,265,095</td>
<td>151,239,979</td>
<td>150,611,230</td>
<td>168,349,458</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>119,972,459</td>
<td>186,583,391</td>
<td>26,792,687</td>
<td>33,536,739</td>
<td>41,807,995</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>58,429,434</td>
<td>63,763,745</td>
<td>56,551,321</td>
<td>61,719,374</td>
<td>66,280,671</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel and Other Kinds</td>
<td>9,345,410</td>
<td>12,899,050</td>
<td>1,493,801</td>
<td>8,737,179</td>
<td>15,502,021</td>
<td></td>
</tr>
<tr>
<td>Seed Oils</td>
<td>10,553</td>
<td>3,309¹</td>
<td>1,786¹</td>
<td>1,111¹</td>
<td>2,203¹</td>
<td></td>
</tr>
<tr>
<td>Turpentine</td>
<td>528,112</td>
<td>526,679</td>
<td>512,836</td>
<td>510,308</td>
<td>573,678</td>
<td></td>
</tr>
</tbody>
</table>

¹ Not including Refined Oil.
In the following tables are given the comparative quantities and values of the chief oils and fats imported and exported during the three years 1907 to 1909:

IMPROTS INTO THE UNITED KINGDOM FOR THE YEARS ENDING DECEMBER 31st.

<table>
<thead>
<tr>
<th></th>
<th>1907</th>
<th>1908</th>
<th>1909</th>
<th>1907</th>
<th>1908</th>
<th>1909</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude Oils—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish, Train, Blubber,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sperm</td>
<td>26,929</td>
<td>32,137</td>
<td>36,221</td>
<td>529,947</td>
<td>601,041</td>
<td>637,221</td>
</tr>
<tr>
<td>Cocoanut</td>
<td>357,815</td>
<td>555,335</td>
<td>502,408</td>
<td>634,357</td>
<td>757,812</td>
<td>752,251</td>
</tr>
<tr>
<td>Olive</td>
<td>7,391</td>
<td>6,330</td>
<td>4,788</td>
<td>287,254</td>
<td>243,497</td>
<td>241,905</td>
</tr>
<tr>
<td>Palm</td>
<td>1,508,023</td>
<td>1,317,995</td>
<td>1,762,641</td>
<td>1,896,133</td>
<td>1,559,266</td>
<td>2,195,620</td>
</tr>
<tr>
<td>Revised Oils—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cocoanut</td>
<td>118,903</td>
<td>203,077</td>
<td>177,085</td>
<td>223,522</td>
<td>323,334</td>
<td>315,690</td>
</tr>
<tr>
<td>Cotton Seed</td>
<td>14,226</td>
<td>15,251</td>
<td>17,560</td>
<td>365,512</td>
<td>401,506</td>
<td>482,139</td>
</tr>
<tr>
<td>Olive</td>
<td>4,937</td>
<td>5,822</td>
<td>4,186</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>Palm</td>
<td>18,656</td>
<td>35,838</td>
<td>58,645</td>
<td>251,634</td>
<td>293,308</td>
<td>276,743</td>
</tr>
<tr>
<td></td>
<td>1907</td>
<td>1908</td>
<td>1909</td>
<td>1907</td>
<td>1908</td>
<td>1909</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Butter</td>
<td>4,210,156</td>
<td>4,210,821</td>
<td>4,062,833</td>
<td>£22,417,926</td>
<td>£24,080,912</td>
<td>£22,425,067</td>
</tr>
<tr>
<td>Margarine</td>
<td>885,068</td>
<td>813,447</td>
<td>868,292</td>
<td>2,223,645</td>
<td>2,081,245</td>
<td>2,243,737</td>
</tr>
<tr>
<td>Lard, from U.S.A.</td>
<td>1,903,961</td>
<td>1,924,881</td>
<td>1,703,578</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" from Other Countries</td>
<td>61,170</td>
<td>62,610</td>
<td>56,707</td>
<td>4,491,539</td>
<td>4,407,410</td>
<td>4,857,199</td>
</tr>
<tr>
<td>Imitation Lard</td>
<td>222,090</td>
<td>174,064</td>
<td>231,847</td>
<td>408,192</td>
<td>306,700</td>
<td>438,909</td>
</tr>
<tr>
<td>Petroleum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamp Oils</td>
<td>150,611,230</td>
<td>168,349,458</td>
<td>146,817,883</td>
<td>2,551,297</td>
<td>2,894,395</td>
<td>2,294,606</td>
</tr>
<tr>
<td>Spirit (Petrol)</td>
<td>33,536,739</td>
<td>41,807,995</td>
<td>52,169,776</td>
<td>979,395</td>
<td>1,118,847</td>
<td>1,215,377</td>
</tr>
<tr>
<td>Lubricating Oils</td>
<td>49,529,960</td>
<td>51,672,903</td>
<td>53,903,880</td>
<td>1,643,142</td>
<td>1,666,952</td>
<td>1,631,367</td>
</tr>
<tr>
<td>Gas Oils</td>
<td>61,719,374</td>
<td>66,280,671</td>
<td>71,586,006</td>
<td>830,165</td>
<td>830,163</td>
<td>690,186</td>
</tr>
<tr>
<td>Fuel Oils</td>
<td>8,737,179</td>
<td>15,286,321</td>
<td>32,687,326</td>
<td>88,286</td>
<td>148,979</td>
<td>276,273</td>
</tr>
<tr>
<td>Total</td>
<td>304,134,482</td>
<td>343,613,048</td>
<td>358,350,381</td>
<td>6,067,288</td>
<td>6,662,811</td>
<td>6,123,889</td>
</tr>
<tr>
<td>Turpentine</td>
<td>510,308</td>
<td>573,678</td>
<td>443,375</td>
<td>975,166</td>
<td>838,454</td>
<td>699,807</td>
</tr>
<tr>
<td>Description of Oils, etc.</td>
<td>1907</td>
<td>1908</td>
<td>1909</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude Oils</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coconuts</td>
<td>56,058</td>
<td>56,887</td>
<td>61,247</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olive</td>
<td>4,946</td>
<td>4,15</td>
<td>1,787</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palm</td>
<td>12,305</td>
<td>10,045</td>
<td>10,618</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refined Oils</td>
<td>9,634</td>
<td>8,118</td>
<td>6,583</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butter</td>
<td>9,634</td>
<td>8,118</td>
<td>6,583</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lard</td>
<td>9,634</td>
<td>8,118</td>
<td>6,583</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imitation Lard</td>
<td>9,634</td>
<td>8,118</td>
<td>6,583</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1907</th>
<th>1908</th>
<th>1909</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>£</td>
<td>£</td>
<td>£</td>
</tr>
<tr>
<td>Crude Oils</td>
<td>56,058</td>
<td>56,887</td>
<td>61,247</td>
</tr>
<tr>
<td>Coconuts</td>
<td>4,946</td>
<td>4,15</td>
<td>1,787</td>
</tr>
<tr>
<td>Olive</td>
<td>12,305</td>
<td>10,045</td>
<td>10,618</td>
</tr>
<tr>
<td>Palm</td>
<td>9,634</td>
<td>8,118</td>
<td>6,583</td>
</tr>
<tr>
<td>Refined Oils</td>
<td>9,634</td>
<td>8,118</td>
<td>6,583</td>
</tr>
<tr>
<td>Butter</td>
<td>9,634</td>
<td>8,118</td>
<td>6,583</td>
</tr>
<tr>
<td>Lard</td>
<td>9,634</td>
<td>8,118</td>
<td>6,583</td>
</tr>
<tr>
<td>Imitation Lard</td>
<td>9,634</td>
<td>8,118</td>
<td>6,583</td>
</tr>
</tbody>
</table>
INDEX

ABSINTHE, 87
Almond oil, 12
American oil industry, 101
Animal oils, 26
Aniseed oil, 87
Arachis oil, 12
Arctic Sperm oil, 33
Artificial lard, 10, 25
Artificial Perfumes, 66

BAKU oil-fields, 100
Bay oil, 53
Beef fat, 28
Beeswax, 32
Bergamot oil, 60
Bitter almond oil, 85
Bleaching of oils, 8
Bottlenose oil, 33
Butter, 29
Cacao butter, 25
Cajuput oil, 91
Cameline oil, 19
Camphor oil, 88
Candlenut oil, 22
Carapa fat, 26
Carnauba wax, 33
Cassia oil, 57
Castor oil, 14
Chrysalis oil, 30
Cinnamon oil, 58
Cinnamon leaf oil, 59
Citronella oil, 52
Clove oil, 77
Cocoanut oil, 24
Cod liver oil, 31
Colza oil, 15
Costus oil, 56
Cotton seed oil, 16
Coumarin, 68
Cow’s butter, 29
Cracking process, 93
Croton oil, 19
Curcas oil, 14

DEER fat, 29
Distillation of Essential oils, 36
Distillation of Mineral oils, 108
Dolphin oil, 32
Drying oils, 3

EARTHNUt oil, 12
Enfleurage, 39
Essential oils, 35
Eucalyptus oils, 90
Expression of oils, 4, 38
Extraction of oils, 6, 39

FISH oils, 30
Fish stearine, 32
Fixed oils, 1
Flashing point, 114
Frankincense oil, 65
Fuel from petroleum, 118

GAS oils, 118
Geranium oil, 46
Ginger oil, 78

HAWTHORN Scent, 70
Hemp seed oil, 21

JAPAN wax, 25
Jasmine oil, 53
Juniper oil, 86

KAPOK oil, 19
Kerosene, 115
Kokam butter, 26

LAMP oils, 112, 114
Lanoline, 33
Lard, 26
Lard oil, 30
Lavender oil, 46
Lemon oil, 80
Lemon grass oil, 52
<table>
<thead>
<tr>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lime oil, 84</td>
</tr>
<tr>
<td>Linaloe oil, 63</td>
</tr>
<tr>
<td>Linseed oil, 20</td>
</tr>
<tr>
<td>Lubricating oils, 115</td>
</tr>
<tr>
<td>MACASSAR oil, 25</td>
</tr>
<tr>
<td>Madia oil, 20</td>
</tr>
<tr>
<td>Mahua butter, 26</td>
</tr>
<tr>
<td>Maize oil, 19</td>
</tr>
<tr>
<td>Mandarin oil, 84</td>
</tr>
<tr>
<td>Margarine, 28</td>
</tr>
<tr>
<td>Marine animal oils, 30</td>
</tr>
<tr>
<td>Menhaden oil, 31</td>
</tr>
<tr>
<td>Mineral oils, 95</td>
</tr>
<tr>
<td>Musk, 70</td>
</tr>
<tr>
<td>Myrrh oil, 65</td>
</tr>
<tr>
<td>NAPHTHA, 116</td>
</tr>
<tr>
<td>Neat's-foot oil, 30</td>
</tr>
<tr>
<td>Neroli oil, 50</td>
</tr>
<tr>
<td>Niger seed oil, 22</td>
</tr>
<tr>
<td>Non-drying oils, 10</td>
</tr>
<tr>
<td>Nut oil, 21</td>
</tr>
<tr>
<td>OLIVE oil, 10</td>
</tr>
<tr>
<td>Opopanax oil, 65</td>
</tr>
<tr>
<td>Orange oil, 83</td>
</tr>
<tr>
<td>Orris oil, 54</td>
</tr>
<tr>
<td>PALM oil, 54</td>
</tr>
<tr>
<td>Palm kernel oil, 24</td>
</tr>
<tr>
<td>Paraffin oils, 108, 112</td>
</tr>
<tr>
<td>Paraffin wax, 117, 119</td>
</tr>
<tr>
<td>Patchouli oil, 56</td>
</tr>
<tr>
<td>Peppermint oil, 72</td>
</tr>
<tr>
<td>Petits grains oil, 52</td>
</tr>
<tr>
<td>Petroleum, 96</td>
</tr>
<tr>
<td>———— jelly, 117</td>
</tr>
<tr>
<td>———— products, 112</td>
</tr>
<tr>
<td>———— wells, 103</td>
</tr>
<tr>
<td>Phulwara butter, 26</td>
</tr>
<tr>
<td>Pimento oil, 78</td>
</tr>
<tr>
<td>Pipe line system, 106</td>
</tr>
<tr>
<td>Poppy oil, 21</td>
</tr>
<tr>
<td>Porpoise oil, 31</td>
</tr>
<tr>
<td>Process butter, 30</td>
</tr>
<tr>
<td>Purification of petroleum, 110</td>
</tr>
<tr>
<td>RAPe oils, 15</td>
</tr>
<tr>
<td>Refining of oils, 8, 110</td>
</tr>
<tr>
<td>Rose oil, 44</td>
</tr>
<tr>
<td>Rosemary oil, 49</td>
</tr>
<tr>
<td>Safflower oil, 22</td>
</tr>
<tr>
<td>Safrol, 67</td>
</tr>
<tr>
<td>Saponification, 3</td>
</tr>
<tr>
<td>Sardine oil, 31</td>
</tr>
<tr>
<td>Sassafras oil, 59</td>
</tr>
<tr>
<td>Sesame oil, 18</td>
</tr>
<tr>
<td>Shark oil, 32</td>
</tr>
<tr>
<td>Shea butter, 26</td>
</tr>
<tr>
<td>Soja bean oil, 20</td>
</tr>
<tr>
<td>Soluble essences, 40</td>
</tr>
<tr>
<td>Spearmint oil, 76</td>
</tr>
<tr>
<td>Sperm oil, 33</td>
</tr>
<tr>
<td>Spermaceti, 33</td>
</tr>
<tr>
<td>Spike oil, 49</td>
</tr>
<tr>
<td>Sunflower oil, 22</td>
</tr>
<tr>
<td>Sunned oils, 111</td>
</tr>
<tr>
<td>TALLOW, 28</td>
</tr>
<tr>
<td>Tallow oil, 30</td>
</tr>
<tr>
<td>Tar from petroleum, 119</td>
</tr>
<tr>
<td>Tea seed oil, 9</td>
</tr>
<tr>
<td>Terpeneless oils, 42</td>
</tr>
<tr>
<td>Thyme oils, 64</td>
</tr>
<tr>
<td>Trade in oil, 121</td>
</tr>
<tr>
<td>Tung oil, 22</td>
</tr>
<tr>
<td>Turpentine oil, 92</td>
</tr>
<tr>
<td>USES of Petroleum, 117</td>
</tr>
<tr>
<td>VANILLIN, 68</td>
</tr>
<tr>
<td>Vaseline, 117</td>
</tr>
<tr>
<td>Vegetable oils, 4</td>
</tr>
<tr>
<td>———— fats, 24</td>
</tr>
<tr>
<td>Verbena oil, 53</td>
</tr>
<tr>
<td>Veti-vert oil, 60</td>
</tr>
<tr>
<td>Violet scents, 69</td>
</tr>
<tr>
<td>Volatile oils, 43</td>
</tr>
<tr>
<td>WAXES, 32</td>
</tr>
<tr>
<td>Whale oil, 32</td>
</tr>
<tr>
<td>Wool fat, 33</td>
</tr>
<tr>
<td>Wormwood oil, 86</td>
</tr>
<tr>
<td>YLANG-YLANG oil, 62</td>
</tr>
</tbody>
</table>
PITMAN'S COMMERCIAL SERIES
A Classified List of Books Suitable for Use in EVENING SCHOOLS & CLASSES And for Reference in BUSINESS HOUSES.

Arithmetic
Book-keeping
Business Training
Business Man's Handbooks
Commercial
Correspondence and Composition
Commercial Geography
Commercial History
Commercial Law
Commercial Products

Commercial Readers
Elementary Law
Handwriting
Languages
Marine Law
Mercantile Law
Note-Books
Practical Primers of Business
Shorthand
Stock Exchange
Traders' Handbooks
Typewriting

SIR ISAAC PITMAN & SONS, LTD.
1 AMEN CORNER, LONDON, E.C.
And at Bath and New York.
CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advertising, Psychology of</td>
<td>18</td>
</tr>
<tr>
<td>Advertising, Theory and Practice of</td>
<td>18</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>3</td>
</tr>
<tr>
<td>Bank Organisation</td>
<td>16</td>
</tr>
<tr>
<td>Bankruptcy and Bills of Sale</td>
<td>19</td>
</tr>
<tr>
<td>Bills, Cheques, and Notes</td>
<td>16</td>
</tr>
<tr>
<td>Book-keeping</td>
<td>4</td>
</tr>
<tr>
<td>Business Man’s Guide</td>
<td>15</td>
</tr>
<tr>
<td>Business Man’s Handbooks</td>
<td>15</td>
</tr>
<tr>
<td>Business Training</td>
<td>8</td>
</tr>
<tr>
<td>Company Law</td>
<td>17</td>
</tr>
<tr>
<td>Commercial Correspondence and Composition</td>
<td>20</td>
</tr>
<tr>
<td>Commercial Geography</td>
<td>23</td>
</tr>
<tr>
<td>Commercial History</td>
<td>24</td>
</tr>
<tr>
<td>Commercial Products</td>
<td>18</td>
</tr>
<tr>
<td>Commercial Readers</td>
<td>26</td>
</tr>
<tr>
<td>Common Commodities of Commerce Series</td>
<td>11</td>
</tr>
<tr>
<td>Elementary Law</td>
<td>25</td>
</tr>
<tr>
<td>French and Italian</td>
<td>29</td>
</tr>
<tr>
<td>German</td>
<td>31</td>
</tr>
<tr>
<td>Guide for the Company Secretary</td>
<td>19</td>
</tr>
<tr>
<td>Handwriting</td>
<td>27</td>
</tr>
<tr>
<td>Household Law</td>
<td>19</td>
</tr>
<tr>
<td>How to Get a Situation Abroad</td>
<td>8</td>
</tr>
<tr>
<td>Indexing and Précis Writing</td>
<td>9</td>
</tr>
<tr>
<td>Insurance</td>
<td>16</td>
</tr>
<tr>
<td>Languages</td>
<td>29</td>
</tr>
<tr>
<td>Law of Carriage</td>
<td>18</td>
</tr>
<tr>
<td>Legal Terms, etc.</td>
<td>25</td>
</tr>
<tr>
<td>Marine Law</td>
<td>17</td>
</tr>
<tr>
<td>Mercantile Law</td>
<td>17</td>
</tr>
<tr>
<td>Money, Exchange, and Banking</td>
<td>16</td>
</tr>
<tr>
<td>Note-Books, etc.</td>
<td>37</td>
</tr>
<tr>
<td>Office Organisation and Management</td>
<td>15</td>
</tr>
<tr>
<td>Periodicals</td>
<td>39</td>
</tr>
<tr>
<td>Portuguese</td>
<td>32</td>
</tr>
<tr>
<td>Practical Primers of Business</td>
<td>12, 13 & 14</td>
</tr>
<tr>
<td>Practical Publicity</td>
<td>18</td>
</tr>
<tr>
<td>Public Man’s Guide</td>
<td>15</td>
</tr>
<tr>
<td>Punctuation</td>
<td>20</td>
</tr>
<tr>
<td>Ready Reckoner</td>
<td>9</td>
</tr>
<tr>
<td>Salesmanship</td>
<td>10</td>
</tr>
<tr>
<td>Shipping Office Organisation</td>
<td>15</td>
</tr>
<tr>
<td>Shorthand</td>
<td>33</td>
</tr>
<tr>
<td>Solicitor’s Office Organisation</td>
<td>16</td>
</tr>
<tr>
<td>Spanish and Portuguese</td>
<td>32</td>
</tr>
<tr>
<td>Stock Exchange, History, Law, and Practice of the</td>
<td>17</td>
</tr>
<tr>
<td>Traders’ Handbooks</td>
<td>10</td>
</tr>
<tr>
<td>Typewriting</td>
<td>38</td>
</tr>
</tbody>
</table>
ARITHMETIC.

BUSINESS ARITHMETIC. Part I. In crown 8vo, cloth, 120 pp., 1s.

Contents.—Simple and Compound Rules, Reduction of Weights and Measures, Vulgar and Decimal Fractions, Proportion and Square Root—Short methods in Multiplication and Division of Decimals to a small number of places, together with a knowledge of the degree of approximation possible—Short methods in Multiplication, Division, Prices of Articles, Practice Interest and Discount, Percentages and Averages, Commission and Brokerage—Areas and Quantities—The Metric System and Coinage of France.

ANSWERS TO BUSINESS ARITHMETIC. Part I. Cloth, 1s.

BUSINESS ARITHMETIC. Part II. In crown 8vo, cloth, 144 pp., 1s. 6d.

Contents.—Stocks and Shares—Profit and Loss—Bills Receivable and Bills Payable, Interest, True Discount and Bankers' Discount. The Use of Logarithms more particularly for Problems on Compound Interest, Insurance, and Annuities—The more important European Weights and Measures other than the Metric—The Coinage of Germany and the United States—and the Weights, Measures and Coinage of India.

ANSWERS TO BUSINESS ARITHMETIC. Part II. Cloth, 1s.

PITMAN'S COMPLETE COMMERCIAL ARITHMETIC. In crown 8vo, cloth, 264 pp., 2s. 6d.

Contains Parts I and II above mentioned.

ANSWERS TO PITMAN'S COMPLETE COMMERCIAL ARITHMETIC. Whole cloth, 1s. 6d.

PITMAN'S SMALLER COMMERCIAL ARITHMETIC. By C. W. Crook, B.A., B.Sc. This volume includes those parts of Arithmetic which are necessary in commercial life. In crown 8vo, cloth, net 1s.

ANSWERS TO SMALLER COMMERCIAL ARITHMETIC. Net 1s.

RAPID METHODS IN ARITHMETIC. By John Johnston. In crown 8vo, cloth, 87 pp., net 1s.

Gives the quickest methods of obtaining solutions to Arithmetical questions of a business character.

EXERCISES IN RAPID METHODS IN ARITHMETIC. By John Johnston. In crown 8vo, cloth, net 8d.

METHOD IN ARITHMETIC. By G. R. Purdie, B.A. A guide to the teaching of Arithmetic. In crown 8vo, cloth, 87 pp., 1s. 6d.

METHOD ARITHMETIC. Illustrates the principles explained in "Method in Arithmetic." 324 pp. 3s.

ANSWERS TO METHOD ARITHMETIC. 67 pp. Net 2s. 6d.

CIVIL SERVICE AND COMMERCIAL LONG AND CROSS TOTS. In crown 8vo, 48 pp., 6d.

Contains 1,200 tests and numerous examples.
BOOK-KEEPING.

PITMAN'S PRIMER OF BOOK-KEEPING. Thoroughly prepares the student for the study of more elaborate treatises. In crown 8vo, 144 pp., cloth, 1s.

Principal Contents.—The entering up and posting up the Cash, Purchases, and Sales Books—Ledger—Making the Trial Balance and preparing the Balance Sheet—Explanation of Bills of Exchange and their Uses—The Treatment of Bad Debts, Dishonoured Bills, Consignments Outwards and Inwards, Partnership Accounts, etc.—Many fully-worked Examples, carefully graduated additional Exercises, Facsimiles of Commercial Documents and Definitions of Business Terms.—The rulings and balances are shown in red ink.

Answers to Pitman's Primer of Book-Keeping. In crown 8vo, cloth, 1s.

Easy Exercises for Pitman's Primer of Book-Keeping. This work provides useful additional exercises for students of the Primer of Book-keeping, and may be used either with or without that text-book. The answers to the exercises are given at the end of the book. In crown 8vo, 48 pp., 6d.

Book-Keeping Diagrams. By James McKee. These diagrams show most graphically how the varied items in a set of transactions should be entered in the books of account, how the Ledger Accounts are closed, and the Profit and Loss Account and Balance Sheet drawn out. Real, Personal, and Nominal Accounts are illustrated, and useful notes and reference numbers are added, so that the student at any stage may use the diagrams with advantage. In crown 8vo, 36 pp., 6d.

Book-Keeping Simplified. A text-book covering all business requirements and affording a thorough preparation for certificate and professional examinations. Special features of the book are the large number of examples worked in full, and the printing of rulings and balances in red ink. New Edition, enlarged, and thoroughly revised. In crown 8vo, cloth, 272 pp., 2s, 6d.

Answers to Book-Keeping Simplified. Revised Edition. In crown 8vo, cloth, 1s.
BOOK-KEEPING (continued).

PITMAN'S ADVANCED BOOK-KEEPING. In crown 8vo, cloth, 187 pp., 2s. 6d.

Principal Contents.—Auditing—The Preparation of Profit and Loss Accounts and Balance Sheets—Bankruptcy, Insolvency Accounts and Statements of Affairs—Joint Stock Companies' Accounts, the Register of Members and Share Ledger, and the Register of Transfers, etc.—The Trading Accounts of Joint Stock Companies, and the Profit and Loss Account and the Balance Sheets—Liquidation—The Tabular System in General—The Tabular System as used in Hotels, etc.

ANSWERS TO PITMAN'S ADVANCED BOOK-KEEPING. In crown 8vo, cloth, 1s.

PITMAN'S COMPLETE BOOK-KEEPING. A thoroughly comprehensive text-book, dealing with all departments of the subject, and embracing practically every kind of account. With about 20 facsimiles of Company Forms, etc. Enlarged Edition. In crown 8vo, cloth, 424 pp., 3s. 6d.

The First Part gives full explanation of Single Entry—Method of Converting Books from Single to Double Entry—Complete Instruction in the Preparation of Balance Sheet—How to Deal with Receipts and Payments by Cheques and Bills—Principal Laws governing use of Paper Money—Returns and Allowances—Bad Debts—Dishonoured Bills, etc.

The Second Part deals with Agency Accounts—Productive Wages Account—Brewery and Colliery Accounts—Accounts for Professional Services—Hotel Book-keeping—Accounts to be kept in hospitals and other charitable institutions—Theoretical and Practical use of the Journal—Joint Stock Company Book-keeping—Insolvency and Bankruptcy Accounts—Executors' and Trustees' Accounts—The Double Account System employed in Railways, Public Works, etc.

The Third Part gives thorough explanations of various kinds of Shipping Accounts, and the terms, books, and forms connected therewith, Inward and Outward Consignments—Accounts Current Book—Bankers' Account Current—How to Draw Bills against Shipment—The Compilation of Shipping Invoices and Account Sales—Letters of Hypothecation and Letters of Lien, with Specimens of these important documents—Orders by Telegraph Code—Calculations of C.I.F. Invoices, etc., etc.

ANSWERS TO PITMAN'S COMPLETE BOOK-KEEPING. Enlarged Edition. In crown 8vo, cloth, 213 pp., 2s. 6d.

Contains answers to all the questions, and fully worked solutions to all the exercises in the text-book.

BOOK-KEEPING FOR RETAILERS. By H. W. Porritt and W. Nicklin, A.S.A.A. (See page 12.)
BOOK-KEEPING (continued).

INCOME TAX ACCOUNTS AND HOW TO PREPARE THEM. Notes on Income Tax Law and Practice. The present work has been designed as a help to book-keepers and others who are entrusted with the duty of compiling the returns to be presented to the Commissioners, and it deals with just those points that are likely to occasion doubt or trouble. In crown 8vo, cloth, 80 pp., 2s.

ADDITIONAL EXERCISES IN BOOK-KEEPING. Nos. I and II. In crown 8vo, 48 pp., each 6d.

Containing papers recently set by the leading Examining Bodies; College of Preceptors; National Union of Teachers, Elementary, Junior, and Senior; Civil Service; London Chamber of Commerce; Society of Accountants and Auditors; Institute of Chartered Accountants; Institute of Bankers; Union of Lancashire and Cheshire Institutes, etc., etc.

ANSWERS TO THE ABOVE EXERCISES. Nos. I and II. Each 6d.

PITMAN'S BOOK-KEEPING TEST CARDS. A series of carefully graded tests in book-keeping by which the student's progress can be satisfactorily gauged. There are three sets, Elementary, Intermediate, and Advanced, and each set contains 20 cards with a varying number of questions on each card selected from those actually set by the different examining bodies. Each set is graded in difficulty, printed on stout cards and put up in a strong cloth case with two sets of answers arranged in book form. The Answers are full and explicit, detailed workings being given and explanations where required. Per set, 1s. 6d.

PITMAN'S BUSINESS BOOK-KEEPING TRANSACTIONS. No. 1. 1s. Including 52 forms for Invoices, Cheques, etc., and 8 blank Exercise Books enclosed in envelope. This work is planned to teach the principles of Book-keeping and at the same time furnish an insight into actual business methods. This is accomplished by the employment of a text-book giving particulars (with copious explanatory notes) of the transactions of a trader, accompanied by facsimiles of all documents which would be received, and of blank forms such as Invoices, Cheques, Bank Paying-in Slip Book, Account Books, etc.

PITMAN'S BOOK-KEEPING TRANSACTIONS. No. 2. This new work is arranged on a plan very similar to that which has proved so successful in the case of Book-keeping Transactions, No. 1; but, of course, the transactions include items of a rather more advanced character. There is a concisely-written text-book, giving clear and explicit instructions in the principles of Book-keeping, full particulars regarding the transactions of a trader, and the trader's books of account, forms, documents, etc., the whole enclosed in a stout envelope. The new work is arranged so as to give not only instruction in Book-keeping, but also a good deal of reliable information relating to business methods. Price 2s.
BOOK-KEEPING (continued).

PITMAN'S HOTEL BOOK-KEEPING. A practical text-book explaining the principles of book-keeping as applied to Hotel accounts. With illustrative forms and exercises. In crown 8vo, cloth, 72 pp., 2s. 6d.

HOW TO TEACH BOOK-KEEPING. By H. W. PORRITT and W. NICKLIN, A.S.A.A. The authors of this valuable book are professional accountants who have also a large and varied experience in the conduct of classes and the coaching of candidates for Book-keeping examinations. The book abounds with practical hints as to the management of classes, the treatment of backward pupils, the examination and marking of papers, etc. There are also specimen courses of lessons suitable for elementary, intermediate, and advanced students, with fully-worked keys, balance sheets, and so on. While primarily appealing to teachers, this book will also be found useful to the learner who is unable to attend a class or who wishes to extend his knowledge beyond what he is able to gain in a class. In crown 8vo, cloth, 180 pp., net 2s. 6d.

PITMAN'S BOOK-KEEPING ANNUAL. Volume I. This volume, the first of its kind, contains the actual papers set at the 1909 Examinations of the principal Education authorities, including The Royal Society of Arts, The London Chamber of Commerce, The Union of Lancashire and Cheshire Institutes, The National Union of Teachers, with answers thereto, and full answers to the many questions on Commercial Law and Business Practice. In crown 8vo, cloth, 212 pp., 2s. 6d.

HOW TO BECOME A QUALIFIED ACCOUNTANT. By R. A. WITTY, A.S.A.A. This book is intended for a guide for those who are desirous of taking up Accountancy as a profession; but many of its pages will be of use to those who are already accountants, and who must have, in the ordinary course of things, pupils and others who are seeking advice from them as to the best methods to be adopted upon entering the profession. For this reason considerable space is devoted to the preparation for examinations, and general advice as to the commencement of practice. Second Edition. In crown 8vo, cloth, 120 pp., net 2s.

ACCOUNTANCY. By F. W. PIXLEY, F.C.A., Barrister-at-Law. The student of Book-keeping, who has thoroughly mastered his subject, cannot do better than devote himself to the higher branches of the work, and study what is described under the general head of Accountancy. The present work on Accountancy is an entirely new book, and will be found to be full of interest and instruction. The author is not only a barrister, but also a member of one of the most eminent firms of accountants in the City of London. His theoretical knowledge and his wide practical experience render him one of the best living authorities upon Accountancy. He has treated the whole field, which he has mapped out in a most thorough fashion, and whatever he says may be relied upon as being the latest and most up-to-date exposition of the subject. In demy 8vo, cloth, 318 pp., net 5s.
BOOK-KEEPING (continued).

IDEAL MANUSCRIPT BOOKS FOR BOOK-KEEPING. Specially ruled and adapted for working the exercises contained in the Primer of Book-keeping. The sets consists of:—Cash Book and Journal; Purchase Book; Sales Book; Ledger. Each 2d.

AVON EXERCISE BOOKS FOR BOOK-KEEPING. Specially adapted for the exercise in "Book-keeping Simplified " or "Advanced Book-keeping." Fcap. folio. Journal, 3d.; Cash Book, 3d.; Ledger, 6d.

BUSINESS TRAINING.

OFFICE ROUTINE FOR BOYS AND GIRLS, 1st STAGE. In crown 8vo, 64 pp., 6d.

Deals with the treatment of outgoing and incoming letters, Postal arrangements, means of remitting money and forwarding goods.

OFFICE ROUTINE FOR BOYS AND GIRLS, 2nd STAGE. In crown 8vo, 64 pp., 6d.

PRINCIPAL CONTENTS.—Business Forms, such as Invoices, Credit Notes, etc.—Telegrams—The Telephone—Banks and Banking, Joint-Stock and Private Banks, Post Office Savings Bank, etc.

OFFICE ROUTINE FOR BOYS AND GIRLS, 3rd STAGE. In crown 8vo, 64 pp., 6d.

Deals with Explanation of Terms—Promissory Notes and Discount—Terms used in Payment of Accounts, etc.—Bills of Exchange—Stocks, Dividends, etc.—Government Securities—Business Correspondence.

COUNTING-HOUSE ROUTINE. 1st Year’s Course. In crown 8vo, cloth, 144 pp., 1s.

Treats of Advertisements, Correspondence, Forwarding of Goods, Remittances, Receipts, Précis Writing, etc., etc.

COUNTING-HOUSE ROUTINE. 2nd Year’s Course. In crown 8vo, cloth, 144 pp., 1s. 6d.

Deals with Inland and Foreign Invoices—Railway Rates and Cable Systems—Bank Deposits and Current Accounts—Bills of Exchange—The Markets—The Shipment of Merchandise—Business Correspondence—Printers’ Proofs—The County Court, etc.

GUIDE TO BUSINESS CUSTOMS AND PRACTICE ON THE CONTINENT. By A. E. DAVIES. Contains information of the utmost value to all who have business relations with Continental firms, or who have to visit the Continent for business or pleasure. In crown 8vo, cloth, 154 pp., net 2s. 6d.

HOW TO GET A SITUATION ABROAD. By ALBERT EMIL DAVIES. Gives information of the most reliable character to those who desire to obtain an appointment in a foreign country. Also states the prospects of advancement in such a position; the varying conditions of life in different countries; the cost of living; the opportunities afforded of perfecting one's knowledge of the foreign language, etc. In crown 8vo, cloth, net 1s. 6d.
BUSINESS TRAINING (continued).

MASTERS' NEW READY RECKONER. Pitman's Edition. Contains 63,000 calculations. In foolscap 8vo, cloth, 358 pp., Is.

GEOGRAPHICAL-STATISTIC UNIVERSAL POCKET ATLAS. By Professor A. L. Hickman. Second Edition. This handy Atlas contains sixty-four splendidly coloured maps and tables, including pictorial charts of the heavens, the races of mankind, religions and languages of the World, statistics of productions, educational tables, coinage, public debts, shipping, coats of arms, railways and telegraphs, imports and exports, principal towns of the World, and a mass of other useful information. In demy 18mo, cloth, net 5s.

HOW TO START IN LIFE. By A. Kingston. In crown 8vo, cloth, 128 pp., Is. 6d.

PITMAN'S MANUAL OF BUSINESS TRAINING. Contains fifty-seven maps and facsimiles. Seventh Edition, thoroughly revised and considerably enlarged. In crown 8vo, cloth, 282 pp., 2s. 6d.

PITMAN'S BUSINESS TERMS AND PHRASES with equivalents in French, German, and Spanish, and a number of Facsimile Documents. In crown 8vo, cloth, 231 pp., 2s. 6d.

GUIDE TO INDEXING AND PRÉCIS WRITING. (See page 13.)

INDEXING AND PRÉCIS WRITING. A text-book specially adapted to the present requirements of Candidates for Examinations. By A. J. Lawford-Jones, of H.M. Civil Service, Medallist and First Prizeman, Society of Arts, 1900. In crown 8vo, cloth, 144 pp., Is. 6d.

EXERCISES AND ANSWERS IN INDEXING AND PRÉCIS WRITING. By Wm. Jayne Weston, M.A. (Lond.). A carefully selected list of actual exercises and test papers with model workings. The author's notes on the various exercises contain many useful hints and some sound advice for the student. In crown 8vo, cloth, 144 pp., Is. 6d.
BUSINESS TRAINING (continued).

HOW TO TEACH BUSINESS TRAINING. By F. Heelis, F.C.I.S. This book contains chapters on teaching methods, the presentation of the subject, the illustration of the lesson, home work, examinations, individual and class tuition, tuition by correspondence, apparatus required, etc., etc. There are also valuable and suggestive notes of lessons, specimen courses, exercises, specimen forms, etc. In crown 8vo, 160 pp., net. 2s. 6d.

QUESTIONS IN BUSINESS TRAINING. By F. Heelis, F.C.I.S. Questions taken from the actual examinations of such authorities as The Union of Lancashire and Cheshire Institutes, The West Riding County Council, and similar important bodies. With many original questions specially framed for the purpose of testing a student's knowledge. There will shortly be issued the Answers to these Questions, and the two books will subsequently be published in one volume. In crown 8vo, 108 pp., is.

SALESMANSHIP. A Practical Guide for Shop Assistant, Commercial Traveller, and Agent. By W. A. Corbion and G. E. Grimsdale. The authors deal at length with the influence of character upon salesmanship, the relation of the salesman to the buyer, the knowledge and care of stock, suggestive salesmanship, the avoidance or rectification of mistakes, system, etc. The lessons for the guidance of the salesman are illustrated by concrete examples, so that the work is eminently practical throughout. In crown 8vo, 186 pp., net 2s. 6d.

PITMAN'S TRADERS' HANDBOOKS.

The new volumes have been prepared with the idea of assisting the earnest business man who is engaged in trade to render himself more efficient in his work. Each in crown 8vo, cloth, 260 pp., net 2s. 6d.

DRAPEERY. By Richard Beynon. The advice given in these pages proceeds from an author who is well known in the trade, and who has devoted his life to it. He has traversed the whole field of Drapery in a thoroughly practical fashion, and writes with the wisdom that comes from forty years' actual experience.

GROCERY. By W. F. Tupman. The author of this volume is well known as the winner of the first prize of a fully stocked shop, valued £500, in the Grocers' Competitive Examination last year, and he has followed up that success by a course of lectures given at Bristol and elsewhere. The main portions of the lectures are reproduced in the present volume.

Other Volumes in preparation.
COMMON COMMODITIES OF COMMERCE SERIES.

Each book in crown 8vo, cloth, with coloured frontispiece and many illustrations, maps, charts, etc., net 1s. 6d.

This series is started with the object of enabling the business man or trader, thoroughly to equip himself for the efficient performance of his specific work and to enlighten the general reader’s mind regarding some of our commonest commodities of commerce. In each handbook a particular produce is treated by an expert writer and practical man of business. Beginning with the life history of the plant, or other natural product, he follows its development until it becomes a commercial commodity, and so on through the various phases of its sale in the market and its purchase by the consumer. Volumes on Tea, Coffee, Cotton, Oil and Sugar start the series.

TEA. From Grower to Consumer. By A. Ibbetson. The author is well known in the Tea world through his connection with the important house of Messrs. Joseph Travers & Sons. Mr. Ibbetson’s pages give much help and information regarding the conditions of the Tea trade, the world’s consumption of the product, and the fluctuation in price, the crops of particular years, the mystery of the art of blending, and so forth.

COFFEE. From Grower to Consumer. By B. B. Keable. Mr. Keable, like Mr. Ibbetson, is in the well-known house of Messrs. Joseph Travers & Sons, and can substantiate his claim to be an authority on Coffee. His book will be found, as in the case of that of Tea, to trace the progress of this commodity throughout.

COTTON. From the Raw Material to the Finished Product. By R. J. Peake. The author has had the supreme advantage of being in close touch with Mr. C. W. Macara, Chairman of the Committee of International Federation of Master Cotton Spinners and Manufacturers, who has contributed advice and read the proofs of the book as it passed through the Press. This little handbook will be found to contain just the kind of information that is required on the greatest of our national industries.

SUGAR, CANE AND BEET. By Geo. Martineau, C.B.

* OIL (MINERAL, ESSENTIAL, AND FATTY). By C. A. Mitchell.

* Ready immediately.
PRACTICAL PRIMERS OF BUSINESS.

Each volume in this series is intended to serve the purpose of an introduction to the particular subject treated, and also to meet the requirements of those who do not wish to gain more than a slight but useful knowledge of the subject.

BOOK-KEEPING FOR RETAILERS. By H. W. Porritt and W. Nicklin, A.S.A.A. The authors of this new book have had in their professional capacity a great amount of experience in retailers' accounts, and in this handy little volume they present a system of book-keeping for retailers designedly simple, easy in operation, and accurate in its results. The adaptation of the system to various retail businesses is clearly discussed and explained. Numerous illustrations and examples simplify the treatment. Additional chapters deal with "Incidental Matters," such as leases, rates, assessment, and stock-taking, the various necessary forms of insurance, the making out of income-tax returns, partnerships and limited companies. In crown 8vo, cloth, 130 pp., net 1s.

ENGLISH COMPOSITION AND CORRESPONDENCE. By J. F. Davis, D.Lit., M.A., LL.B. (Lond.). The purpose of this book is, by means of a few simple rules, to enable a writer of either sex to express himself or herself clearly and correctly in the mother tongue as it ought to be written. The first part contains chapters on accidence with examples from Commercial Correspondence. The second part deals with syntax, parsing, analysis, and punctuation. The third part treats of the construction of sentences; precision and order, and the choice of words; and closes with specimens of business letters. The author, from his experience as examiner in English to the University of London and the Institute of Bankers, is peculiarly fitted to deal with this subject. In crown 8vo, cloth, 118 pp., net 1s.

THE ELEMENTS OF COMMERCIAL LAW. By A. H. Douglas, LL.B. (Lond.). In the present volume the general principles of commercial law are presented. Examples and illustrations are freely used, in order that the subject may be made as intelligible and interesting as possible. In the first portion of the book the general principles of contract are discussed in comprehensive fashion, and later chapters deal with commercial relationships, partnerships, the sale and carriage of goods, and negotiable instruments. The author is a barrister-at-law who has attained the highest academic distinction both at the Inns of Court and London University. In crown 8vo, cloth, 128 pp., net 1s.
GUIDE TO INDEXING AND PRÉCIS WRITING. By William Jayne Weston, M.A., and E. Bowker. The present little work is intended primarily for candidates for the Civil Service, the Society of Arts, and similar examinations in the subject of Indexing and Précis Writing. All, however, who are to be tested as to their ability to select and present the essence of many documents would be able to use the Guide with much advantage. The papers included deal with a variety of subjects, and they are fully worked, so that the student may see at a glance the best form of solution to a given exercise. It may be added that the whole of the exercises included in the book are reproductions of actual examination papers. In crown 8vo, cloth, 116 pp., net 1s.

THE MONEY, AND THE STOCK AND SHARE MARKETS. By Emil Davies. The idea of the author of this volume is not so much to give information to experts, but rather to assist the uninitiated in the somewhat complicated subjects of stock and share transactions. The author has for many years been actively engaged in the higher branches of finance, and makes the present primer as comprehensive and practical a work as possible. It is hoped that the second part, dealing with the stock and share markets, will be of interest and use, not only to business students, but also to the great body of small investors. In crown 8vo, cloth, 124 pp., net 1s.

SHIPPING. By Arnold Hall and F. Heywood. This book constitutes a reliable guide to the routine in connection with the shipment of goods and the clearance of vessels inwards and outwards. Part I describes the work of a shipper, and explains his duties after the receipt of the indent, in packing, forwarding, and insuring the goods, making out and sending the invoices, telegraphing, the routine of obtaining payment, customs formalities, claims for insurance, etc. Part II gives precise information regarding the work of a shipbroker, the entry and clearance inwards, the details in connection with the Custom House and the Shipping Office, the entry outwards, riggers, runners, and pilots, the Docks, Warehousing, Shipping, Exchange, etc., etc. The book is illustrated with twenty-seven reproductions of actual shipping forms, and there is a complete 8vo, cloth, 108 pp., net 1s.
PRACTICAL PRIMERS OF BUSINESS (continued).

THE ELEMENTS OF BANKING. By J. P. Gandy. Besides giving a brief history of Banking, this book deals practically with such matters as Opening an Account, the various forms of Cheques, Crossings, Endorsements, Bills of Exchange, the Rights of Holders of those instruments, Promissory Notes, the Pass Book, and the Collecting Banker. There are also chapters explanatory of the Bankers' Clearing House, the necessary steps to be taken in the case of dishonoured bills and cheques, etc. The Banker's obligations to his customers, the rights and duties of agents and trustees, Partnership Accounts and Companies' Accounts are all fully dealt with, while Circular Notes and Letters of Credit receive adequate attention. In crown 8vo, cloth, 140 pp., net 1s.

THE ELEMENTS OF INSURANCE. By J. Alfred Eke. This new work presents in a brief form a vast amount of information with regard to the principles and practice of the important business of insurance. Workmen's compensation insurance is fully dealt with, and the book also treats of baggage insurance, bad debt insurance, live-stock insurance, stock insurance, etc., etc. There are chapters on carriage insurance, burglary insurance, marine, fire, and life insurance, with full explanations of the various kinds of policies, and in many cases reproductions of the documents. As to the credentials of the author, it will be sufficient to say that the whole of his business life has been spent in the study and practice of insurance, and that he is connected with one of the largest insurance companies in the country. In crown 8vo, cloth, 140 pp., net 1s.

ADVERTISING. By Howard Bridgewater. The author of this little work is the Advertisement Manager of a well-known daily paper, and the writer of many articles on the subject of advertising. He speaks, therefore, with the authority which comes of long experience. In the present work, Mr. Bridgewater sets forth the principles to be observed in drawing up advertisements, points out the errors that are to be avoided, gives hints on the preparation of "copy," and the choice of suitable media, describes the processes employed in reproducing illustrations of various kinds, and discusses the questions of type display and the frequency of insertion, etc., etc. The book is illustrated by examples of good and bad advertisements, representative of various businesses. In crown 8vo, cloth, net 1s.
BUSINESS MAN'S HANDBOOKS.

PITMAN'S BUSINESS MAN'S GUIDE. Fifth Edition, Revised. With French, German and Spanish equivalents for the Commercial Words and Terms. Edited by J. A. Slater, B.A., LL.B., of the Middle Temple, Barrister-at-law, and author of "Commercial Law of England." The information is of such a character as will assist a business man in an emergency and will clear up doubts and difficulties of everyday occurrence. The work includes over 2,000 articles. In crown 8vo, cloth cover of special design, 500 pp., net 3s. 6d.

PITMAN'S PUBLIC MAN'S GUIDE. A Handbook for all who take an interest in questions of the day. Edited by J. A. Slater, B.A., LL.B. (Lond.). The object of this book is to enable its readers to find within a comparatively compact compass information on any subject which can possibly bear upon matters political, diplomatic, municipal, or imperial. There is no book of a similar nature published, and this will be found invaluable to all public men and platform speakers. In crown 8vo, cloth gilt, 444 pp., 3s. 6d. net.

OFFICE ORGANISATION AND MANAGEMENT, INCLUDING SECRETARIAL WORK. By Lawrence R. Dicksee, M. Com. F.C.A., and H. E. Blain, Tramways Manager, County Borough of West Ham. This volume gives in detail, with the aid of specially selected illustrations and copies of actual business forms, a complete description of Office Organisation and Management under the most improved and up-to-date methods. It has been specially written so as to be of service either to those who are about to organise the office work of a new undertaking, or to those who are desirous of modernizing their office arrangements so as to cope more successfully with the ever increasing competition which is to be met with. In demy 8vo, cloth gilt, 306 pp., net 5s.

INSURANCE OFFICE ORGANISATION, MANAGEMENT, AND ACCOUNTS. By T. E. Young, B.A., F.R.A.S., and Richard Masters, A.C.A. Mr. Young, who has held with marked distinction some of the highest positions in the Insurance world, enjoys an international reputation as an expert in the subject, while Mr. Masters, from his long practical experience as an Insurance Accountant, is familiar with every detail of the book-keeping requisite to a well-conducted office. Second Edition, Revised. In demy 8vo, cloth gilt, 146 pp., net 3s. 6d.

SHIPPING OFFICE ORGANISATION, MANAGEMENT AND ACCOUNTS. By Alfred Calvert. Full information is given in this new book of the methods of securing orders, getting in patterns, circularising foreign firms, conditions of sale, fulfilling contracts, making up and packing goods for shipment, arranging for insurance, shipment and freight, chartering of vessels, pricing and invoicing the goods, preparing the bills of lading, etc., etc. The book contains many and varied shipping documents in facsimile. Put in a few brief words, the new work gives an accurate insight into the thousand and one technicalities associated with the intricate business of a shipping house. In demy 8vo, cloth gilt, 203 pp., net 5s.
BUSINESS MAN'S HANDBOOKS (continued).

SOLICITOR'S OFFICE ORGANISATION, MANAGEMENT, AND ACCOUNTS. By E. A. Cope, and H. W. Robins. In demy 8vo, cloth gilt, 176 pp., with numerous forms, net 5s.

BANK ORGANISATION, MANAGEMENT, AND ACCOUNTS. By J. F. Davis, M.A., D.Lit., LL.B. (Lond.). In demy 8vo, cloth gilt, 165 pp., with forms, net 5s.

PITMAN'S BILLS, CHEQUES, AND NOTES: A HANDBOOK FOR BUSINESS MEN AND COMMERCIAL STUDENTS.

The attempt has been made in this book to trace the principal negotiable instruments, viz., bills of exchange, cheques and promissory notes, from their inception to their discharge, and to point out the exact position occupied by every person who is in any way connected with these documents. The Bills of Exchange Act, 1882, and the Amending Act, Bills of Exchange (Crossed Cheques) Act, 1906, are printed in extenso in the Appendix. In demy 8vo, cloth gilt, 206 pp., net 2s. 6d.

INSURANCE. By T. E. Young, B.A., F.R.A.S., ex-President of the Institute of Actuaries; ex-Chairman of the Life Offices' Association, etc., etc. A complete and practical exposition for the Student and the Business Man of the principles and practice of Insurance presented in a simple and lucid style, and illustrated by the author's actual experience as a Manager and Actuary of long standing. This book has been written expressly for (1) The Actuarial student, (2) The student of Fire, Marine and Insurance generally, (3) The Insurance Clerk, (4) The Business Man. It treats in an elementary and intelligible manner of the principles, processes and conduct of Insurance business as a key to the interpretation of the accounts and practice of offices and as a comprehensive foundation for maturer study. Second Edition. In demy 8vo, cloth gilt, 408 pp., net 5s.

MONEY, EXCHANGE, AND BANKING. Second Edition, Revised. A Complete and Practical Treatise for Bank Officials, Men of Business, and Commercial Students. By H. T. Easton, of the Union of London and Smiths Bank, Ltd., Associate of the Institute of Bankers, author of "Banks and Banking," "The Work of a Bank," etc. A practical work, covering the whole field of banking and providing new and valuable features of great use to the student, bank clerk, or man of business. In addition to an important chapter dealing with the arithmetic of the Exchanges, there is a very full explanation of bank book-keeping, a complete glossary of all terms used in the banking world, and a section dealing with the law relating to banking considered not from a legal standpoint, but from the point of view of the practical banker or business man. Second Edition, Revised. In demy 8vo, cloth gilt, 312 pp., net 5s.
BUSINESS MAN'S HANDBOOKS (continued).

THE HISTORY, LAW, AND PRACTICE OF THE STOCK EXCHANGE. By A. P. Poley, B.A., Barrister-at-Law, and F. H. Carruthers Gould, of the Stock Exchange. A complete compendium of the law and the present practice of the Stock Exchange. Special attention is devoted to the Rules of the Stock Exchange, and these are given in full. Mr. Poley, who is well known as a writer upon legal subjects, and whose work on solicitors is the leading authority upon the subject, deals fully with all the latest legal decisions touching the Stock Exchange, while so far as the practice is concerned, this portion of the book has been dealt with by a well-known member of the Exchange itself. In demy 8vo, cloth gilt, 338 pp., net 5s.

PITMAN'S MERCANTILE LAW. By J. A. Slater, B.A., LL.B. As a practical exposition for law students, business men, and advanced classes in commercial colleges and schools, this volume will be found invaluable. Without being a technical law book, it provides within moderate compass a clear and accurate guide to the Principles of Mercantile Law in England, and as such will especially appeal to the business man. Second, Revised and Cheaper Edition. In demy 8vo, cloth gilt, 448 pp., net 5s.

THE LAW OF HEAVY AND LIGHT MECHANICAL TRACTION ON HIGHWAYS IN THE UNITED KINGDOM. By C. A. Montague Barlow, M.A., LL.D., and W. Joyynson Hicks. The Locomotive Act, 1861; The Locomotives Act, 1865; The Roads and Bridges (Scotland) Act, 1878; The Locomotives Amendment (Scotland) Act, 1878; The Highways and Locomotives Act, 1878 (so far as it relates to locomotives); The Public Health (Ireland) Amendment Act, 1879, s. 6; The Locomotives on Highways Act, 1896; The Locomotives Act, 1898, and The Motor Car Act, 1903; with Notes; and the Local Government Board Regulations, including Regulations as to Tare Weight, together with a Summary of the English and Scotch Reported Cases on Extraordinary Traffic. In demy 8vo, cloth gilt, 318 pp., net 8s. 6d.

ENCYCLOPAEDIA OF MARINE LAW. By Lawrence Duckworth, Barrister-at-Law. The method of treatment has been made alphabetical for facility of reference. All the main principles of Marine Law are thus brought together under their distinctive headings, and the use of an elaborate index is dispensed with. The latest authorities have been carefully consulted, and the latest statutes and decisions are incorporated in the text. To all those who have to deal with shipping in any shape or form, the present volume will prove a most valuable handbook. Second Édition. In demy 8vo, cloth gilt, 352 pp., net 5s.

COMPANIES AND COMPANY LAW. Together with the Companies (Consolidation) Act, 1908. By A. C. Connell, LL.B. (Lond.). In the present volume the law of Companies is treated on the lines adopted by the new Consolidation Act. In demy 8vo, cloth gilt, 344 pp., net 5s.
BUSINESS MAN'S HANDBOOKS (continued).

THE LAW OF CARRIAGE. By J. E. R. Stephens, B.A. Of the Middle Temple, Barrister-at-Law. A clear and accurate account of the general traders' rights and liabilities in everyday transactions with carriers, whether by land or by water. Cases are quoted and statutes cited, and a complete index renders the book easy of reference. The success of Mr. Stephens as a clear and able writer of legal text-books is too well known to need anything more than the mere mention of the fact. In demy 8vo, cloth gilt, 340 pp., net 5s.

THE THEORY AND PRACTICE OF ADVERTISING. By Walter Dill Scott, Ph.D., Director of the Psychological Laboratory of North-Western University, U.S.A.

The author of this work has made advertising the study of his life and is acknowledged as one of the greatest authorities on the subject in the United States. The book is so fascinatingly written that it will appeal to many classes of readers. In large crown 8vo, cloth, with 61 illustrations, 240 pp., net 6s.

THE PSYCHOLOGY OF ADVERTISING. A Simple Exposition of the Principles of Psychology in their Relation to Successful Advertising. By the same author. Professor Dill Scott has made a very lengthy and careful examination of his subject, a task for which his special training and his wide experience eminently qualify him. In view of the publication of the present work he prosecuted extensive inquiries as to the effect of various styles of advertising, etc., receiving replies from about 2,300 business and professional men. He gives us the result of his researches in this book. In large crown 8vo, cloth gilt, with 67 illustrations, 282 pp., net 6s.

THE PRINCIPLES OF PRACTICAL PUBLICITY. Being a Treatise on "The Art of Advertising." By TRUMAN A. DE WEESE. The author was in charge of special Publicity for the Louisiana Purchase Exposition at St. Louis (1904), and is Director of Publicity for one of the largest advertising firms in America. The book will be found a comprehensive and practical treatise covering the subject in all its branches, showing the successful adaptation of advertising to all lines of business. It has been written not only for the Manufacturer, the Merchant, the Business Man, and the student of Advertising, but for everyone who is seeking to create a market for a commodity or to increase the sales of his product. In large crown 8vo, cloth, with 43 full-page illustrations, 266 pp., net 7s. 6d.

THE WORLD'S COMMERCIAL PRODUCTS. A descriptive account of the Economic Plants of the World and of their Commercial Uses. By W. G. Freeman, B.Sc., F.L.S., Superintendent, Colonial Economic Collections, Imperial Institute, London, and S. E. Chandler, D.Sc., F.L.S., Assistant, Colonial Economic Collections, Imperial Institute, London. With contributions by numerous Specialists. This is a fully illustrated work dealing with the Vegetable Commercial Products of the World. Twelve coloured plates are added, and the addition of maps renders the work most valuable for information and reference. In demy 4to, cloth gilt, 400 pp., net 10s. 6d.
BUSINESS MAN'S HANDBOOKS (continued).

PITMAN'S OFFICE DESK BOOK. Contains most of the matters upon which information is constantly required in an office. Gives reliable information on points of Commercial Law, Banking, and Bank Notes, Bills of Exchange, the Board of Trade, Joint Stock Companies, Deeds, Taxes, Weights and Measures, Insurance, Importing and Exporting, Foreign Exchanges, Methods of Calculation, etc., etc., and also a useful Ready Reckoner. Second, Revised and Cheaper Edition. In crown 8vo, cloth, 309 pp., net 15s.

WHERE TO LOOK. An easy guide to the contents of certain specified books of reference. Third Annual Edition, revised and augmented with the assistance of a prominent Public Librarian, and the Foreign Librarian, of Mudie's. Including a list of the principal continental and American books of reference with a note of their contents. In crown 8vo, cloth, 140 pp., net 2s.

PITMAN'S SECRETARY'S HANDBOOK. Edited by Herbert E. Blain, joint author of "Pitman's Office Organisation and Management." An entirely new work, written on an original plan, and dealing in a concise yet sufficiently full manner with the work and duties in connection with the position of Secretary to a Member of Parliament or other public man; to a Country Gentleman with a landed estate; a charitable institution; with a section devoted to the work of the Lady Secretary, and a chapter dealing with secretarial work in general. In demy 8vo, cloth gilt, 168 pp., net 3s. 6d.

PITMAN'S GUIDE FOR THE COMPANY SECRETARY. A Practical Manual and Work of Reference with regard to the Duties of a Secretary to a Joint Stock Company. By Arthur Coles, A.C.I.S., Sometime Lecturer in the Technological Schools of the London County Council. With an Introduction by Herbert E. Blain. The author has had many years' practical experience of Company Secretarial work, which is dealt with very exhaustively and freely illustrated with fifty-four facsimile forms. In demy 8vo, cloth gilt, 346 pp., 5s. net.

HOUSEHOLD LAW. By J. A. Slater, B.A., LL.B. (Lond.). The present volume has been prepared on lines similar to those adopted by the author in his successful work on "Mercantile Law." The treatment of the subject is essentially popular, and the nature of the information conveyed is such as every householder should be able to satisfy himself upon without any considerable amount of research. In demy 8vo, cloth gilt, 316 pp., net 5s.

BANKRUPTCY AND BILLS OF SALE. By W. Valentine Ball, M.A., Barrister-at-Law. The present volume deals with the law of Bankruptcy and Bills of Sale in a manner similar to the treatment of the other subjects which are included in Pitman's Commercial Series. The principles are laid down with the utmost accuracy, and full references are given to all the leading cases, especially those of a recent date. A supplement is issued in every year when a new edition does not appear. In demy 8vo, cloth gilt, 366 pp., net 5s.
COMMERCIAL CORRESPONDENCE AND COMPOSITION.

PITMAN'S GUIDE TO COMMERCIAL CORRESPONDENCE AND BUSINESS COMPOSITION. By W. Jayne Weston, M.A. Intended for beginners in the study of commercial education, this book gives simple but practical instruction in the art of business composition and the writing of commercial letters, and is suitable either for private study or for use in class. It does not consist merely of a collection of miscellaneous letters, but contains besides revisionary exercises and many reproductions in facsimile of commercial documents. In crown 8vo, quarter cloth, 146 pp., 1s. 6d.

INDEXING AND PRÉCIS WRITING. (See page 9.)

PUNCTUATION AS A MEANS OF EXPRESSION. By A. E. Lovell, M.A. A complete guide to the accurate use of stops in writing. In crown 8vo, cloth, 80 pp., 1s. 6d.

THE AVON ENGLISH GRAMMAR PRIMER. In crown 8vo, cloth, 219 pp., 1s.

A GUIDE TO ENGLISH COMPOSITION, with Progressive Exercises. By the Rev. J. H. Bacon, Rector of Great Gonerby, author of "A Complete Guide to the Improvement of the Memory," etc. In fcap. 8vo, 112 pp., paper, 1s.; cloth, 1s. 6d.

NOTES OF LESSONS ON ENGLISH. A comprehensive series of lessons intended to assist teachers of English Composition and Grammar. In crown 8vo, cloth, 208 pp., 3s. 6d.

GRAMMAR AND ITS REASONS: For Students and Teachers of the English Tongue. By Mary Holland Leonard. This book is a series of essays, dealing with the more important parts of English Grammar. In crown 8vo, cloth, 392 pp., net 3s. 6d.

PITMAN'S STUDIES IN ELOCUTION. By E. M. Corbould (Mrs. Mark Robinson). A guide to the Theory and Practice of the art of Public Speaking, Reciting, and Reading. With over 100 selections for Reciters and Readers. In crown 8vo, cloth gilt, gilt top, silk register, net 2s. 6d.

ENGLISH COMPOSITION AND CORRESPONDENCE (Davis). (See page 12.)

PITMAN'S COMMERCIAL CORRESPONDENCE AND COMMERCIAL ENGLISH. A new and practical Manual of Commercial Correspondence in two divisions: first, Commercial Correspondence, including about 340 letters; and, second, Commercial English. In crown 8vo, cloth, 272 pp., 2s. 6d.
COMMERCIAL CORRESPONDENCE, ETC. (continued).

PITMAN’S COMMERCIAL CORRESPONDENCE IN FRENCH. This work gives all the letters of "Pitman's Commercial Correspondence" in French, and also contains a List of French Commercial Abbreviations, French coinage, weights, measures, and other matter of importance to the student of Commercial French, together with a number of reduced facsimiles of actual French business forms and documents. Notes are added to each letter. In crown 8vo, cloth, 240 pp., 2s. 6d.

PITMAN’S COMMERCIAL CORRESPONDENCE IN GERMAN. In this work all the letters contained in "Pitman’s Commercial Correspondence" are translated into German, with useful notes at the foot of each letter. It also contains a list of German Business Abbreviations, German coinage, weights, measures, etc., and reduced facsimiles of a number of German documents and business forms. In crown 8vo, cloth, 240 pp., 2s. 6d.

PITMAN’S COMMERCIAL CORRESPONDENCE IN SPANISH. This work contains a Spanish translation of all the letters in "Pitman’s Commercial Correspondence," with copious notes on the idiomatic phrases, etc., facsimiles of commercial documents, and a map of Spain, with the names of the towns, rivers, etc., in Spanish. In crown 8vo, 240 pp., 3s.

PITMAN’S COMMERCIAL CORRESPONDENCE IN SHORTHAND (Reporting Style). This work gives in beautifully engraved Shorthand all the letters included in "Pitman’s Commercial Correspondence," with a chapter on the Shorthand Clerk and his Duties. Every care is taken to secure a style of writing which shall be a model. In crown 8vo, cloth, 240 pp., 2s. 6d.

PITMAN’S INTERNATIONAL MERCANTILE LETTERS. In five volumes, crown 8vo, cloth gilt; each about 250 pp.

<table>
<thead>
<tr>
<th>Language Combination</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>English-German</td>
<td>2s. 6d.</td>
</tr>
<tr>
<td>English-French</td>
<td>2s. 6d.</td>
</tr>
<tr>
<td>English-Italian</td>
<td>3s. 0d.</td>
</tr>
<tr>
<td>English-Portuguese</td>
<td>3s. 6d.</td>
</tr>
</tbody>
</table>

Each volume contains a very large and widely varied collection of business letters, arranged in groups and in series, and dealing at length with (a) Business in Goods; (b) Banking, etc.; (c) Commission and Consignment Business; and (d) The Transport and Insurance of Merchandise. Each set of transactions is first presented in the form of a précis or summary, and then the same transactions are fully illustrated by letters. In the English-Foreign volumes the information respecting the particular business treated, the précis of the transactions, and the letters are given in English and in either French, German, Italian, or Portuguese, according to the language dealt with in the volume. In each of the five volumes there are additional Exercises for practice, and a useful List of Business Abbreviations in two or more languages, arranged in parallel columns.
COMMERCIAL CORRESPONDENCE, ETC. (continued).

ELEMENTARY GERMAN CORRESPONDENCE. By Lewis Marsh, B.A. (Hons.), Cantab. Intended for students who are just beginning the study of Commercial German. Facsimiles are furnished of German commercial correspondence and business documents. In crown 8vo, cloth, 143 pp., 2s.

THE FOREIGN CORRESPONDENT. By Albert Emil Davies. For the student, the youthful commercial aspirant, or the clerk wishful of bettering his position, the book is a guide and counsellor. In crown 8vo, cloth, 80 pp., net 1s. 6d.

PITMAN'S DICTIONARY OF COMMERCIAL CORRESPONDENCE IN FRENCH, GERMAN, SPANISH, AND ITALIAN. This volume has been limited to the most common and ordinary terms and phrases of a commercial nature. No intelligent person who has a slight knowledge of the construction of French, German, Spanish, or Italian, will find any difficulty in composing a commercial letter in any of these languages, if a proper use of the work is made as directed in the Introduction. In demy 8vo, cloth, 502 pp., net 7s. 6d.

ENGLISH-GERMAN AND GERMAN-ENGLISH DICTIONARY OF BUSINESS WORDS AND TERMS. A new pocket English-German and German-English Dictionary, with a list of Abbreviations in general use, by Fritz Hundel. Size 2 by 6 in., rounded corners, roan, net 2s. 6d.

A NEW DICTIONARY OF THE PORTUGUESE AND ENGLISH LANGUAGES. Based on a manuscript of Julius Cornet, by H. Michaelis. In two Parts. First Part: Portuguese-English, Second Part: English-Portuguese, Colloquial, commercial, and industrial terms have been plentifully introduced throughout the book and irregularities in the formation of the plural and in the conjugation of verbs have been carefully noted. Second Edition. Two volumes, 15s. each, net.

ABRIDGED EDITION. Two parts in one volume, net 15s.

DICTIONARY OF COMMERCIAL PRODUCTS, with equivalents in French, German, and Spanish. (See pages 30, 31, 32.) 2s. 6d.

COMMERCIAL DICTIONARY. In this book univocal words which present no difficulty as to spelling are omitted, and abbreviations, signs, anglicized foreign expressions, etc., are placed in their alphabetical order in the body of the book. The appendix contains forms of address, foreign coinages, weights and measures, etc. In crown 8vo, paper boards, net 9d.; cloth, net 1s.

STUDIES IN ESSAY WRITING. By V. P. Peacock. This book deals, in a very attractive manner, with the higher stages of the art of English Composition. In crown 8vo, paper, net 6d., cloth, net 9d.
COMMERCIAL GEOGRAPHY.

THE WORLD AND ITS COMMERCE: A Primer of Commercial Geography. Contains simply written chapters on the general geography of the world, the seven great industries, the commercial geography of the British Empire at home and abroad, and of foreign countries. The information conveyed is quite up-to-date. In crown 8vo, cloth, 128 pp., with thirty-four additional maps, \text{1s.}

Part II.—The British Empire.—The United Kingdom—The British Empire Abroad.
Part III.—Foreign Countries.
A thorough description is given of the commercial position, the mineral, agricultural and manufactured productions, and chief commercial towns of each country.

PITMAN'S COMMERCIAL GEOGRAPHY OF THE UNITED KINGDOM. In crown 8vo, cloth, 128 pp., with 30 coloured maps and plates, \text{1s.}

PITMAN'S COMMERCIAL GEOGRAPHY OF BRITISH COLONIES AND FOREIGN COUNTRIES. In crown 8vo, cloth, 144 pp., with 35 maps, \text{1s. 6d.}

Principal Contents.—The British Empire Abroad.—Naval and Military Stations—Canada and Newfoundland—Australia, Tasmania, and New Zealand—the British Empire in Asia and Africa—the British West Indies, etc. Foreign Countries.—Europe generally: France, Germany, Holland, Russia, Belgium, Spain, Denmark, Sweden, Norway, Italy, Switzerland, Austria-Hungary, Portugal, Turkey, and Greece—Minor European Countries—Asia generally—North America generally, the United States—Mexico and the Republics of Central America—South America generally, and the States of South America.

PITMAN'S COMMERCIAL GEOGRAPHY OF THE WORLD. For Principal Contents see Books I and II immediately above. In crown 8vo, cloth, 272 pp., with 72 maps and plates, \text{2s. 6d.}

THE WORLD'S COMMERCIAL PRODUCTS. (See page 18.)

GEOGRAPHICAL STATISTIC UNIVERSAL POCKET ATLAS. (See page 9.)
COMMERCIAL HISTORY.

PART I.—The History of Commerce down to the end of the Middle Ages—Coloured Maps, Plates, Maps in black and white, fully illustrated from ancient tapestries, sculptures, etc., etc.

PART II.—The History of Commerce from the Middle Ages to the Present Time.—Maps, Plates, etc.

THE EVOLUTIONARY HISTORY OF ENGLAND, Edited by OSCAR BROWNING, Fellow of King’s College, Cambridge. 125 illustrations, beautiful reproductions of eleven famous historical paintings, genealogical tables, glossary, summary. 272 pp., 1s. 10d.

COMMERCIAL LAW.

THE ELEMENTS OF COMMERCIAL LAW. By A. H. DOUGLAS, LL.B. (Lond.). (See page 12.)

THE COMMERCIAL LAW OF ENGLAND. A Handbook for Business Men and Advanced Classes in Schools. By J. A. SLATER, B.A., LL.B. (Lond.), of the Middle Temple and North-Eastern Circuit, Barrister-at-Law. This work is intended for the service of advanced students in schools; but it has been designed in an equally important degree as a constant desk companion to the modern man of business. It is believed that the method of treatment will render the work a useful text-book for the various examinations in Commercial Law. With five facsimiles. Bills of Exchange (at 3 mos.), do. (at sight), Bill of Lading, Charter Party, Cheque crossings. Fourth Edition. In crown 8vo, cloth, 227 pp., 2s. 6d.

QUESTIONS AND ANSWERS IN COMMERCIAL LAW. By J. WELLS THATCHER, Barrister-at-Law. This new book contains the whole of the questions in Commercial Law set at the examinations of the London Chamber of Commerce and the Royal Society of Arts, for the years 1900 to 1909 inclusive, with the correct answers thereto. In crown 8vo, cloth gilt, 2s. 6d.
COMMERCIAL LAW (continued).

PITMAN'S HANDBOOK OF LOCAL GOVERNMENT LAW. Specially designed for students for the Examination of the Institute of Municipal Treasurers and Accountants (Incorporated), as well as for all students engaged in the offices of Local Authorities in England and Wales. By J. Wells Thatcher, of the Middle Temple, Barrister-at-Law. One of the Lecturers on Local Government Law and Commercial Law for the Educational Committee of the London County Council. In large 8vo, cloth gilt, 250 pp., net 3s. 6d.

ELEMENTARY LAW FOR SHORTHAND CLERKS AND TYPISTS. The plan followed in this work is that of giving such an account of various branches of English law as shall serve to bring out the precise significance of the chief terms customarily used by lawyers, and often used by laymen. In crown 8vo, cloth, 213 pp., 2s. 6d.

LEGAL TERMS, PHRASES, AND ABBREVIATIONS. For typists and Shorthand and other Junior Clerks. This work is supplementary to "Elementary Law," and its chief object is that of enabling junior clerks in English legal offices to gain an intelligible grasp of the meaning of the terms that they are called upon to employ every day. In crown 8vo, cloth, 200 pp., 2s. 6d.

PITMAN'S SOLICITOR'S CLERK'S GUIDE. By E. A. Cope. This work is designed to serve for beginners and junior clerks in solicitors' offices the purpose served as regards other callings by office guides and other introductory technical books. In crown 8vo, cloth, 2s. 6d.

CONVEYANCING. By E. A. Cope. Explains the essentials of a contract relating to land, illustrates the nature, the form, and the structure of the modern deed, the order of its contents, the importance of recitals, the clauses implied by virtue of the Conveyancing and other Acts, the appropriate use of technical expressions, and numerous other points. In crown 8vo, cloth, 206 pp., net 3s.

PITMAN'S BILLS, CHEQUES, AND NOTES. (See page 16.) Net 2s. 6d.

PITMAN'S MERCANTILE LAW. By J. A. Slater, B.A., LL.B. (See page 17.) Net 5s.

THE LAW OF HEAVY AND LIGHT MECHANICAL TRACTION ON HIGHWAYS IN THE UNITED KINGDOM. By C. A. Montague Barlow, M.A., LL.D., and W. Joyson Hicks. (See page 17.) Net 8s. 6d.

ENCYCLOPAEDIA OF MARINE LAW. By Lawrence Duckworth, Barrister-at-Law. (See page 17.) Net 5s.

BANKRUPTCY AND BILLS OF SALE. By W. Valentine Ball, M.A., Barrister-at-Law. (See page 19.) Net 5s.

COMPANIES AND COMPANY LAW. By A. C. Connell, LL.B. (See page 17.) Net 5s.

THE LAW OF CARRIAGE. By J. E. R. Stephens, B.A., (See page 18.) Net 5s.
COMMERCIAL READERS.

PITMAN'S COMMERCIAL READER (Intermediate Book). A splendidly illustrated reading book, written on the same general plan as the Senior Book in the same series, but intended for younger readers. It is divided into nine sections, dealing with the chief branches of Modern Industry, such as Paper-making and the Production of Books and Newspapers; Steam and Machinery; Shipping; Mining and Metal Works; Electricity and its Uses; Cotton and what is made from it; Woollen Manufactures, etc. Each Section ends with the life story of some notable industrial pioneer. In crown 8vo, cloth, 240 pp., 1s. 9d.

PITMAN'S COMMERCIAL READER (Senior Book). An Introduction to Modern Commerce. The most important and valuable Reading Book yet published for use in the Upper Classes in Day Schools and in Evening Continuation Schools. Crown 8vo, cloth, 272 pp., 2s.

Contains over 160 black and white illustrations, which include reproductions of famous pictures by Lord Leighton, P.R.A., Vicat Cole, R.A., Sidney Cooper, R.A., and Marcus Stone, R.A., together with portraits (reproduced from photographs) of Lord Rothschild, Lord Armstrong, Lord Masham, Sir Alfred Jones, Sir George Williams, Guglielmo Marconi, etc., etc., etc.; six black and white maps, and a coloured quarto Map of the World, showing the British Empire, the chief Telegraph Cables and Steamer Routes, etc.; Glossary.

PITMAN'S FRENCH COMMERCIAL READER. Deals in an interesting manner with the leading Commercial and National Institutions of France. The reading matter is most carefully selected, and while the student of French is improving his mastery of the language, he is at the same time getting a good insight into French commercial methods. Thus, while reading about invoices, the actual document is brought under his notice. Additional value is given to the book by the inclusion of questions and exercises. Maps, illustrations, and facsimiles of French commercial documents illustrate the text, and, in addition, the book contains a selection of commercial letters, a full list of commercial abbreviations in current use, and an exhaustive vocabulary. In crown 8vo, cloth, 208 pp., 2s. 6d.

PITMAN'S GERMAN COMMERCIAL READER. Prepared on similar lines to the French Commercial Reader above. It furnishes a practical introduction to German commercial institutions and transactions, with questions and exercises which render it well suited for use in schools. Students are afforded the fullest help possible from plates, illustrations, maps, and facsimiles of German commercial documents. The text has had the benefit of revision by modern language masters in well-known schools. In crown 8vo, cloth, 208 pp., 2s. 6d.
PITMAN'S COMMERCIAL SERIES

HANDWRITING.

PITMAN'S COMMERCIAL HANDWRITING AND CORRESPONDENCE. A complete and reliable guide for the student of any kind of handwriting, designed for use in class for self-tuition. In fcap. quarto, quarter cloth, 2s.

Contains carefully graduated Exercises, together with Plain and Practical Instructions for the Rapid Acquisition of a Facile and Legible Business Style of Handwriting—Furnishes also Explicit Directions for the Formation of the Recognised Civil Service Style—Text Hand—Legal Style—Engrossing Style—Block Lettering, as Required for Business Purposes—Valuable Hints on Business Composition—Specimens of Written Business Letters and Various Commercial documents, such as Account Sales, Accounts Current, Bills of Exchange, Promissory Notes, I.O.U.'s, Invoices, Statements, Receipts, etc.—Lists of Business Abbreviations, and Particulars of the Examination Requirements of the Society of Arts, Union of Lancashire and Cheshire Institutes, Midland Union of Institutes and other Examining Authorities.

The whole of the numerous exercises, copies and illustrations are facsimile reproductions of the author's actual handwriting.

BUSINESS HANDWRITING. The object of this work is to enable students to acquire the habit of writing with ease and rapidity, in such a manner that the meaning of even careless writing may be at once evident to the reader. The many illustrations and exercises form a special feature of the work, and these are photographic reproductions of the actual writing of the author and his professional friends. In crown 8vo, cloth, 84 pp., 1s.

PITMAN'S COMMERCIAL COPY AND EXERCISE BOOKS. These Copy Books contain carefully graded sets of exercises in business work. The copies are engraved in a clear style of writing, for the purpose of guiding the student to a rapid and legible commercial hand. In fcap. folio, 32 pp., each 6d.

No. 1.—Documents and Exercises relating to the Home Trade.

No. 2.—Documents and Exercises relating to the Import and Export Trade.

PRINCIPAL CONTENTS.—Shipping Invoices of various kinds—Account Sales—Statements of Account—Credit Notes—Inland Bill and Promissory Note—Account Current—Balance Sheets—Bills of Exchange—Bank Deposit Slips—Bills of Lading—Advice Notes—Customs Declaration Forms and Despatch Notes for Parcels Post—Brokers' Notes—Market Reports—Price Lists—Letters of Advice—Insurance Accounts, etc., with blank forms to be filled up by the student, and also a list of Commercial Terms and Abbreviations with their meanings.
EXERCISE BOOK OF FACSIMILE COMMERCIAL FORMS. Designed for the dual purpose of a copy book of commercial handwriting and to enable the student to familiarize himself with the filling up of business documents, etc. Among the forms given are:—Accounts Current, Account Sales Invoices, Bills of Lading, Bills of Exchange, Cheques, Consignment Notes, etc. In large post 4to, printed in red and black, in wrapper, 32 pp., 6d.

PITMAN'S FACSIMILE COMMERCIAL FORMS. A collection of the most common forms in everyday use in business to be filled up by the student. 26 separate forms in envelope. 6d. Forms separately, per dozen, 3d.

PITMAN'S OFFICE ROUTINE COPY BOOK, No. 1. In large post 4to, 24 pp., 3d.

CONTAINS:—Specimen Addresses—Clerical, Commercial, Express Delivery, French, German, Italian, Miscellaneous, Official, Private, Railway, Registered, and Spanish, with forms for Transmitting Money or Goods by Post or Rail.

PITMAN'S OFFICE ROUTINE COPY BOOK, No. 2. In large post 4to, 24 pp., 3d.

PITMAN'S OFFICE ROUTINE COPY BOOK, No. 3. In large post 4to, 24 pp., 3d.

CIVIL SERVICE AND COMMERCIAL COPYING FORMS. A collection of papers set at various examinations, with suggestions for obtaining the best results. In crown 8vo, 40 pp., 6d.

RULED FORMS for use with above. Books I and II. Each fcap. folio, 40 pp., 8d.
FRENCH AND ITALIAN.

PITMAN'S FRENCH COURSE, Part I. Grammar, with exercises, carefully selected conversational phrases and sentences, correspondence, short stories from French authors, and judiciously chosen vocabulary with imitated pronunciation. In crown 8vo, paper, 6d.; cloth, 8d.

PITMAN'S FRENCH COURSE, Part II. In crown 8vo, paper, 8d.; cloth, 10d.

KEY TO PITMAN'S FRENCH COURSE, Parts I and II. In crown 8vo, each is. 6d.

PITMAN'S PRACTICAL FRENCH GRAMMAR and Conversation for Self-Tuition, with copious Vocabulary and Imitated Pronunciation. In crown 8vo, 120 pp., paper, is.; cloth, is. 6d.

A CHILD'S FIRST STEPS IN FRENCH. By A. Vizetelly. An elementary French reader with vocabulary. Illustrated. In crown 8vo, limp cloth, 9d.

FRENCH BUSINESS LETTERS. A Practical Handbook of Commercial Correspondence in the French Language, with copious notes in English. In crown 4to, 6d.

COMMERCIAL CORRESPONDENCE IN FRENCH. (See page 21.) In crown 8vo, 240 pp., cloth, 2s. 6d.

FRENCH COMMERCIAL READER. (See page 26.) In crown 8vo, cloth, 208 pp., 2s. 6d.

FRENCH COMMERCIAL PHRASES and Abbreviations with Translation. In crown 8vo, 6d.

FRENCH BUSINESS INTERVIEWS. With Correspondence, Invoices, etc., each forming a complete Commercial Transaction, including Technical Terms and Idiomatic Expressions, accompanied by a copious vocabulary and notes in English. This work can be commended to all who desire to acquaint themselves with commercial French. In crown 8vo, 80 pp., paper, is.; cloth, is. 6d.

EASY FRENCH CONVERSATIONAL SENTENCES. With literal interlinear translation and imitated pronunciation. In crown 8vo, 6d.

ADVANCED FRENCH CONVERSATIONAL EXERCISES. Consisting of everyday phrases, dialogues, proverbs, and idioms, with translation, for the use of schools and private students. In crown 8vo, 6d.

EXAMINATIONS IN FRENCH, AND HOW TO PASS THEM. Examination Papers recently set at some of the Chief Public Examinations fully solved. In crown 8vo, 6d.

FRENCH TOURIST'S VADE MECUM. A careful selection of everyday phrases in constant use, with Vocabularies, Tables, and the Exact Pronunciation of every word. An easy method of acquiring a knowledge of French sufficient for all purposes of Tourists or Business Men. Special attention has been devoted to the section on Cycling and Photography. Handy size for the pocket, cloth, net 1s.

ITALIAN TOURISTS' VADE MECUM. On the same lines as the French volume. Cloth, net 1s.
FRENCH AND ITALIAN (continued).

FRENCH TRANSLATION AND COMPOSITION. By Lewis Marsh, B.A. (Hons.), Cantab., Med. and Mod. Languages Tripos, Late Exhibitioner of Emmanuel College; White Prizeman; Assistant Master, City of London School; and Special Instructor in French and German to the London County Council. Students preparing for public examinations will find this book exceedingly helpful. It is divided into four Parts. In Part I the chief difficulties met with in translation are classified and arranged, and the hints conveyed are summarized in a number of "Golden Rules" at the end; while in Part II the author works through a good selection of representative extracts according to the methods previously described, and finally gives in each case a finished translation, the aim throughout being to teach the student to deal intelligently with different styles of prose and verse. Part III consists of 100 carefully graduated extracts to be worked out by the student himself, all taken from classical French authors; and these are followed in Part IV by exercises in French composition based on the extracts in the preceding part. At the end is a French-English and English-French vocabulary. In crown 8vo, cloth, 187 pp., 2s. 6d.

FRENCH PHRASES FOR ADVANCED STUDENTS. By Edward Kealey, B.A. A collection of useful phrases compiled on a new system. This book cannot fail to be of the utmost utility and assistance to those advanced students of French who are anxious to increase their knowledge of idiomatic terms and expressions. The author, who is Modern Language Master at Ampleforth College, Oswaldkirk, has brought together the phrases which he has found useful in his career as a teacher, and he has had every opportunity of testing their value by the practical tests of public examinations. In crown 8vo, 1s. 6d.

PITMAN'S DICTIONARY OF COMMERCIAL CORRESPONDENCE IN FRENCH, GERMAN, SPANISH AND ITALIAN. (See page 22.) Net 7s. 6d.

DICTIONARY OF THE WORLD'S COMMERCIAL PRODUCTS. Second Edition, Revised. With French, German, and Spanish equivalents for the Names of the Products. By J. A. Slater, B.A., LL.B. In demy 8vo, 163 pp., cloth, 2s. 6d.

THE FOREIGN CORRESPONDENT. By Albert Emil Davies. (See page 22.) In crown 8vo, cloth, 80 pp., net 1s. 6d.

PITMAN'S INTERNATIONAL MERCANTILE LETTERS. French. (See page 21.) In crown 8vo, cloth, 2s. 6d.

PITMAN'S INTERNATIONAL MERCANTILE LETTERS. Italian. (See page 21.) In crown 8vo, cloth, 3s.
GERMAN.

PITMAN'S GERMAN COURSE. Part I, Grammar, with exercises, carefully selected conversational Phrases and Sentences, Correspondence, short stories from German authors, and vocabulary with imitated pronunciation. In crown 8vo, paper, 6d.; cloth, 8d.

KEY TO PITMAN'S GERMAN COURSE. Part I. In crown 8vo, 1s. 6d.

PITMAN'S PRACTICAL GERMAN GRAMMAR and Conversation for Self-Tuition, with copious Vocabulary and imitated pronunciation. In crown 8vo, paper, 1s.; cloth, 1s. 6d.

GERMAN BUSINESS INTERVIEWS, Nos. 1 and 2. With Correspondence, Invoices, etc.; each forming a Complete Commercial Transaction, including Technical Terms, Dialogues for Travellers, and Idiomatic Expressions used in Shipping and Mercantile Offices, accompanied by a copious marginal Vocabulary and Notes in English. In crown 8vo, each, paper, 1s.; cloth, 1s. 6d.

ELEMENTARY GERMAN CORRESPONDENCE. By Lewis Marsh, B.A. (See page 22.) In crown 8vo, cloth, 2s.

COMMERCIAL CORRESPONDENCE IN GERMAN. (See page 21.) In crown 8vo, cloth, 240 pp., 2s. 6d.

GERMAN COMMERCIAL READER. (See page 26.) In crown 8vo, cloth, 208 pp., 2s. 6d.

GERMAN BUSINESS LETTERS, With copious marginal vocabulary and notes in English, and some letters in German script characters. In crown 8vo, 6d.

GERMAN COMMERCIAL PHRASES. With abbreviations and translation. In crown 8vo, 6d.

EXAMINATIONS IN GERMAN, and How to Pass Them, being Examination Papers recently set at the Chief Public Examinations, fully solved. In crown 8vo, 6d.

EASY GERMAN CONVERSATIONAL SENTENCES. With literal interlinear translation and imitated pronunciation. In crown 8vo, 6d.

ADVANCED GERMAN CONVERSATIONAL EXERCISES. In crown 8vo, 6d.

GERMAN TOURIST'S VADE MECUM. With vocabularies, tables, etc., and the exact pronunciation of every word; being a careful selection of phrases in constant use. In crown 8vo, cloth, net 1s.

DER NEFFE ALS ONKEL. Schiller's Comedy, fully annotated. In crown 8vo, paper, 6d., cloth, 1s.

ENGLISH-GERMAN AND GERMAN-ENGLISH DICTIONARY OF BUSINESS WORDS AND TERMS. (See page 22.) Size 2 by 6 in., rounded corners, cloth, net 2s. 6d.

PITMAN'S DICTIONARY OF COMMERCIAL CORRESPONDENCE IN FRENCH, GERMAN, SPANISH AND ITALIAN. (See page 22.) In demy 8vo, cloth, 500 pp., net 7s. 6d.

DICTIONARY OF THE WORLD'S COMMERCIAL PRODUCTS (SLATER). With equivalents in French, German, and Spanish. (See page 30.) 2s. 6d.

PITMAN'S INTERNATIONAL MERCHANTILE LETTERS. English-German. (See page 21.) In crown 8vo, cloth, 2s. 6d.
SPANISH AND PORTUGUESE.

SPANISH BUSINESS LETTERS. A handbook of commercial correspondence in the Spanish language. In crown 8vo, 6d.

SPANISH BUSINESS INTERVIEWS. With Correspondence, Invoices, etc. In crown 8vo, paper, 1s. ; cloth, 1s. 6d.

EASY SPANISH CONVERSATIONAL SENTENCES. With literal interlinear translation and imitated pronunciation. In crown 8vo, 6d.

ADVANCED SPANISH CONVERSATIONAL EXERCISES. Consisting of everyday phrases, dialogues, proverbs, and idioms, with translation. In crown 8vo, 6d.

PITMAN'S PRACTICAL SPANISH GRAMMAR. With Conversation for Self-Tuition, copious vocabulary, and imitated pronunciation. In crown 8vo, paper, 1s. ; cloth, 1s. 6d.

SPANISH COMMERCIAL PHRASES. With abbreviations and translation. In crown 8vo, 8d.

SPANISH TOURIST'S VADE MECUM of Spanish Colloquial Conversation, with vocabularies, tables, etc., and the exact pronunciation of every word. Cloth, net 1s.

COMMERCIAL CORRESPONDENCE IN SPANISH. (See page 21.)

SPANISH SHORTHAND. (See page 36.)

PITMAN'S DICTIONARY OF COMMERCIAL CORRESPONDENCE. (See page 22.) Net 7s. 6d.

DICTIONARY OF THE WORLD'S COMMERCIAL PRODUCTS. (See page 30.) 2s. 6d.

THE FOREIGN CORRESPONDENT (Davies). (See page 22.) Net 1s. 6d.

A NEW DICTIONARY OF THE PORTUGUESE AND ENGLISH LANGUAGES. (See page 22.)

PITMAN'S INTERNATIONAL MERCANTILE LETTERS. English-Portuguese. (See page 21.)

LAW.

See under "Commercial Law" and "Business Handbooks."
SHORTHAND.

(Abridged List. Complete Catalogue on application.)

PHONOGRAPHIC TEACHER. Price 6d.; post-free 6½d.
KEY TO THE "PHONOGRAPHIC TEACHER." Price 6d.; post-free 6½d.
EXERCISES IN PHONOGRAPHY. Price 1d.; post-free 1½d.
PROGRESSIVE STUDIES IN PHONOGRAPHY. Price 1s. ; cloth, 1s. 6d.
PITMAN'S SHORTHAND WRITING EXERCISES AND EXAMINATION TESTS. In crown 8vo, cloth. Price 1s. 6d.; stiff boards, 1s.
KEY TO PITMAN'S SHORTHAND WRITING EXERCISES AND EXAMINATION TESTS. In crown 8vo, cloth gilt, 267 pp., 3s. 6d.
PITMAN'S SHORTHAND INSTRUCTOR. A Complete Exposition of Sir Isaac Pitman's System of Phonography. Price 3s. 6d.
KEY TO "PITMAN'S SHORTHAND INSTRUCTOR," Price 1s.; cloth, 1s. 6d.
PITMAN'S SHORTHAND MANUAL (being Part I of "Pitman's Shorthand Instructor"). Price 1s. 6d.; cloth, 2s.
KEY TO "PITMAN'S SHORTHAND MANUAL," Price 6d.; post-free 7d.
PITMAN'S SHORTHAND GRADUS; a Series of Writing Exercises. Price 2d.; post-free 2½d.
PITMAN'S SHORTHAND REPORTER (being Part II of "Pitman's Shorthand Instructor"). Price 2s.; cloth, 2s. 6d.
KEY TO "PITMAN'S SHORTHAND REPORTER " (being Part II of "Pitman's Shorthand Instructor"). Price 6d.; post-free 6½d.
REPORTING EXERCISES. Price 6d.; post-free 6½d.
KEY TO "REPORTING EXERCISES." In the Reporting Style of Pitman's Shorthand. Price 1s.
GRAMMALOGUES AND CONTRACTIONS. Price 2d.; post-free 2½d.
PITMAN'S SHORTHAND PRIMER. In three books. Price 6d. each; post-free 6½d.
KEY TO "PITMAN'S SHORTHAND PRIMER," Books I, II, and III. Price 6d. each; post-free 6½d.
PITMAN'S SHORTHAND READING LESSONS, No. 1. Price 6d.; post-free 6½d.
PITMAN'S SHORTHAND READING LESSONS, No. 2. Price 9d.; post-free 1½d.
KEY TO "PITMAN'S SHORTHAND READING LESSONS," Nos. 1 and 2, in ordinary print. Each 2d.
COMPEND OF PHONOGRAPHY. Price 1d.; post-free 1½d.
PITMAN'S "FONO" HEAD-LINE SHORTHAND COPY BOOKS.

<table>
<thead>
<tr>
<th>Book</th>
<th>For "The"</th>
<th>No. 1</th>
<th>For "Pitman's"</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Phonographic</td>
<td>2</td>
<td>Shorthand</td>
</tr>
<tr>
<td>B</td>
<td>Teacher."</td>
<td>3</td>
<td>Primer, Book I.</td>
</tr>
</tbody>
</table>

Price 2d. each; post-free 2½d.
SHORTHAND (continued).

SHORTHAND COMMERCIAL COURSE. Cloth, 240 pp. Price 3s. 6d.

KEY TO SHORTHAND COMMERCIAL COURSE. Cloth. Price 1s. 6d.

GRADUATED TESTS IN PITMAN'S SHORTHAND. Price 6d.; post-free 6½d.

PITMAN'S SHORTHAND CANDIDATE'S DICTATION EXERCISES. Cloth 1s.

PITMAN'S PROGRESSIVE DICTATOR. Cloth, 228 pp., 2s. 6d.

PITMAN'S ABRIDGED SHORTHAND DICTIONARY. Price, roan, gilt edges, 2s. 6d.

REPORTER'S ASSISTANT. Price 1s. 6d.; cloth, 2s.

PHONOGRAPHIC PHRASE BOOK. Price 1s.; cloth, 1s. 6d.

RAILWAY PHRASE BOOK. Price 6d.; post-free 6½d.

LEGAL PHRASE BOOK. Price 6d.; post-free 6½d.

MILITARY PHRASE BOOK. Price 1s.

INSURANCE PHRASE BOOK. Price 6d.; post-free 6½d.

BANKING PHRASE BOOK. Price 6d., post free 6½d.

TECHNICAL REPORTING. Price 1s. 6d.; cloth, 2s.

INTERLINED SPEED PRACTICE BOOKS. No. 1.—Speeches. No. 2.—Sermons. No. 3.—Commercial. Price 1½d. each; post-free 2d.

KEYS TO "INTERLINED SPEED PRACTICE BOOKS," Nos. 1, 2, and 3. In Reporting Style. Price 2d. each; post-free 2½d.

GRADUATED DICTATION BOOKS. No. 1.—Political Speeches, No. 2.—Sermons. No. 3.—Commercial. No. 4.—Speeches (Commercial) and Addresses. In crown 8vo. Price 4d. each; post-free 4½d.

KEY TO "GRADUATED DICTATION BOOK IN SHORTHAND, Nos. 1 and 2." In Reporting Style. In crown 8vo. Each 6d.; post-free 7d.

BRIEF REPORTING NOTES IN SHORTHAND. Price 6d.; post-free 7d.; cloth. 1s.

PITMAN'S REPORTING PRACTICE. In crown 8vo, cloth. Price 2s.

SHORTHAND IN THE OFFICE. Price 1s. 6d.; cloth, 2s.

SHORTHAND COMMERCIAL LETTER WRITER. Price 1s.; cloth, 1s. 6d.

KEY TO THE "SHORTHAND COMMERCIAL LETTER WRITER." Price 6d.; post-free 7d.; cloth, 1s.

THE SHORTHAND COMMERCIAL LETTER WRITER AND KEY in one volume. Cloth, 2s.
SHORTHAND (continued).

OFFICE WORK IN SHORTHAND. Price 1s.; cloth, 1s. 6d.

KEY TO "OFFICE WORK IN SHORTHAND." Price 6d.; post-free 7d.; cloth, 1s.

OFFICE WORK IN SHORTHAND AND KEY, in one volume. Cloth, 2s.

BUSINESS CORRESPONDENCE IN SHORTHAND. Price 1s.; cloth, 1s. 6d.

KEY TO "BUSINESS CORRESPONDENCE IN SHORTHAND," Price 6d.; post-free 7d.; cloth, 1s.

BUSINESS CORRESPONDENCE IN SHORTHAND AND KEY. In one volume, bound in cloth. Price 2s.

TRADE CORRESPONDENCE IN SHORTHAND. Price 1s.

KEY TO "TRADE CORRESPONDENCE IN SHORTHAND." Price 6d.; post-free 7d.

PITMAN'S SHORTHAND TEACHER'S HANDBOOK. Tenth Edition. In crown 8vo. Price, cloth, 6d.

LIFE OF SIR ISAAC PITMAN, Inventor of Phonography. With about 50 illustrations. In demy 8vo, cloth gilt, gilt top, 7s. 6d.

SHORTHAND READING BOOKS.

(Printed from engraved characters except where otherwise stated.)

In the Learner's Style.

ÆSOP'S FABLES. In words of one syllable. Price 6d.; post-free 6½d.

EASY READINGS. Price 6d.; post-free 6½d.

LEARNER'S SHORTHAND READER. Price 6d.; post-free 6½d.

PITMAN'S SHORTHAND READING LESSONS, No. 1. (See page 27.)

In the Corresponding Style.

PHONOGRAPHIC READER. Price 6d.; post-free 6½d.

THE CHIMES. By CHARLES DICKENS. Price 1s. 6d.; cloth, 2s

THE BATTLE OF LIFE. By CHARLES DICKENS. Price 1s.; cloth, 1s. 6d.

THE BOOK OF PSALMS. From the Authorised Version of the Bible. Price 1s.; cloth, 1s. 6d.

SELF-CULTURE. By J. S. BLACKIE. Price 1s.; cloth, 1s. 6d.

KEY to ditto, in ordinary print. In post 8vo. Price, cloth, 2s. 6d.

THE VICAR OF WAKEFIELD. By OLIVER GOLDSMITH. Illustrated. Price 2s.; cloth, 2s. 6d

GULLIVER'S VOYAGE TO LILLIPUT. By JONATHAN SWIFT. Price 1s.; cloth, 1s. 6d.

ROBINSON CRUSOE. By DANIEL DEFOE. Illustrated. Price 2s.; cloth, 2s. 6d.

TALES AND SKETCHES. By WASHINGTON IRVING; with Key in ordinary print. Price 1s.; cloth, 1s. 6d.

THE SILVER SHIP OF MEXICO. A tale of the Spanish Main. An abridgment of J. H. Ingraham's story. Price 1s.; cloth, 1s. 6d.
SHORTHAND READING BOOKS (continued).

SELECT READINGS, No. 1. Price 6d.; post-free 6½d.
SELECT READINGS, No. 2. Price 6d.; post-free 6½d.
PITMAN'S SHORTHAND READING LESSONS, No. 2. (See page 27)
CHRISTMAS CAROL. By Charles Dickens Price 1s.; cloth is. 6d.

THE CRICKET ON THE HEARTH. By Charles Dickens. Price 1s. 6d.; cloth 2s.

THE HAUNTED MAN. By Charles Dickens; with 23 illustrations by S. J. Loxton. Price 1s. 6d.; cloth 2s.

TALES FROM DICKENS. Price 1s. 6d.; cloth, 2s.

THE SIGN OF FOUR. By Sir A. Conan Doyle. Price 1s. 6d.; cloth 2s.

AROUND THE WORLD IN EIGHTY DAYS. By Jules Verne, abridged. Price 1s. 6d.; cloth, 2s.

SELECTIONS FROM AMERICAN AUTHORS. Price 1s.; cloth, 1s. 6d.

THE LEGEND OF SLEEPY HOLLOW. By Washington Irving with Key in ordinary print. Price 6d.; post-free 6½d.

MUGBY JUNCTION AND OTHER STORIES. By Charles Dickens. Price 1s. 6d.; cloth 2s.

RIP VAN WINKLE. By Washington Irving; with Key in ordinary print. Three illustrations. Price 6d.; post-free 6½d.

GLEANINGS, No. 1. Price 6d.; post-free 6½d.

GLEANINGS, No. 2. Price 6d.; post-free 6½d.

THE HOLY BIBLE. Containing the Old and New Testaments. Lithographed in the Easy Reporting Style. Authorised Version. Price, cloth, red edges, 10s.; roan, gilt edges, 12s.; morocco, gilt edges, 15s.

THE NEW TESTAMENT. In Easy Reporting Style with two coloured maps. Authorised Version. Price, roan, red edges, 4s.; morocco, gilt edges, 5s.

THE BOOK OF COMMON PRAYER. Easy Reporting Style. Price, roan, red edges, 4s.; morocco, gilt edges, 5s.

CHURCH SERVICES. Easy Reporting Style, 935 pp. Price, roan, bevelled boards, gold lettered back and side, 5s. 6d.; morocco ditto, gilt edges, 7s. 6d.

THANKFUL BLOSSOM. By Bret Harte. Price 1s.; cloth, 1s. 6d.

ADAPTATIONS OF PHONOGRAPHY TO FOREIGN LANGUAGES. Dutch Phonography, 5s.; Esperanto Phonography, 1s. net; French Phonography, 1s. and 1s. 6d.; German Shorthand, 1s. 6d. and 2s.; Italian Phonography, 2s. 6d.; Japanese Phonography, Part I, 1s 6d., Part II, 2s.; Examples and Exercises, 1s.; Spanish Shorthand 3s. 6d., Key, 2s.; Welsh Shorthand, 2s.
NOTE-BOOKS, ETC.

In ordering through a bookseller please state "FONO" series and the register number which is printed on each copy, and be careful to accept no other. Imitations are often sold which are vastly inferior in quality of paper and strength of binding.

FONO REPORTER'S NOTE-BOOKS.

No. 1.—Red lines, suitable for pen or pencil; with the Grammalogues, alphabetically arranged, printed inside the cover. 80 pp., 1d., post-free 1½d.; six copies, post-free 9d.; twelve copies, post-free 1s. 3d.

No. 2.—Red lines, suitable for pen or pencil; with the Grammalogues inside the cover. 160 pp., 2d., post-free 3d.; six copies, post-free 1s. 3d.; twelve copies, post-free 2s. 4d.

No. 3.—With the Contracted Words inside the cover. 200 pp., 3d.; post-free 4d.

No. 4.—With List of Longhand Press Contractions and Press Telegraph Regulations printed inside the cover. 160 pp., superior paper, elastic binding, 4d.; post-free 5d. Cloth cases for holding this, and also No. 3 Note-book, can be had from 6d. to 3s.

No. 5.—Single or Double Lines. 200 pp., 8 by 5, elastic binding to open flat, 6d.; post free 7d. Cloth cases for holding this Note-book can be had at 1s. each.

No. 5 R.—200 pages, 8 in. by 5 in., elastic binding to open flat. Exactly like No. 5, except that the lines are ruled in red instead of blue, as in the ordinary No. 5 Single Lines. Price 6d.; post-free 8d.

No. 5 W.—This book is ruled in red, and is like No. 5 R, except that there is greater space between the ruled lines. Price 6d.; post-free 8d.

No. 5 M.—Exactly like No. 5 W, but with a ruled margin at the left side of the page for the purpose of reference marks, numbers, etc. Price 6d.; post-free 8d.

No. 6.—Unruled, to open at the side. Elastic binding, 240 pp., 6d.; post-free 7d.

No. 20.—Single lines, stiff boards, marginal red line. 200 pp., 8½ in. by 5½ in., elastic binding, 8d.; post-free 9d.

No. 21.—PITMAN'S S-O (Side-Opening) REPORTER'S NOTE-BOOK. Elastic binding; opens flat. 200 pp., 6d.

ELASTIC-BOUND NOTE-BOOKS. Made of the very best paper, to open flat on the desk, strongly bound. As supplied to His Majesty's Government. Nos. 12 and 15 are made of slightly thinner paper.

No. 7.—Single lines, half-cloth, 150 pp., 8 by 5, 1s.

8.— (red) " 200 " 8 " 5, 1s. 6d.

9.— " 180 " 9 " 5½, 1s. 6d.

10.— cloth, 250 " 9 " 5½, 2s.

12.—Single lines, stiff boards, 400 " 8 " 5, 1s.

15.— (stitched), 250 " 8 " 5, 1s. 6d.
NOTE-BOOKS, ETC. (continued).

POCKET NOTE-BOOKS. Elastic binding, made of the very best paper.
 No. 17.—Single lines, half-cloth, 120 pp., $7\frac{1}{4}$ by $4\frac{3}{4}$, 9d., post-free, 10d.
 ,, 18.—Double lines ,, 120 ,, $7\frac{1}{4}$,, $4\frac{1}{2}$, 9d., post-free 10d.

PITMAN'S NOTE-BOOK COVER AND TRANSCRIBING SLOPE. 9 in. by 5 in. With Note-book, 2s.
 No. 19.—Refills for above. 9 in. by 5 in. Red, marginal ruling. 140 pp., 6d.
 A LIBERAL REDUCTION IS ALLOWED ON A QUANTITY.

TYPEWRITING.

PITMAN'S TYPEWRITER MANUAL. Illustrated with numerous facsimile plates. Lists of abbreviations. Fully explains the Touch Typewriting Method. Fourth Edition In large post 4to, cloth, 3s.

PITMAN'S EXERCISES AND TESTS IN TYPEWRITING. Contains upwards of eighty exercises, forty tests, a list of the chief towns in the United Kingdom, specimen addresses, draft directions for practice in business composition, postal information, lists of foreign words, phrases and sayings, business terms, newspaper expressions, etc. In foolscap folio, 158 pp. Price 3s.

PITMAN'S TYPEWRITING EXAMPLES. Forty-eight facsimile examples, embracing a variety of typewriting work. In foolscap folio, 2s. 6d.

Ditto. Printed in oblong note-book for standing by the side of the machine, 2s.

Ditto. Note-book form, in covers. 1s. 6d.

REMINGTON TYPEWRITER MANUAL. Illustrated. With facsimiles and Exercises. In large post 4to, quarter cloth, 1s.; cloth, 1s. 6d.

PITMAN'S PRACTICAL COURSE IN TOUCH TYPEWRITING. A Scientific Method of Mastering the Keyboard by the sense of Touch. Single Keyboard Edition, 1s. 6d. Double Keyboard Edition, 1s. 6d.

*MODERN TYPEWRITING AND MANUAL OF OFFICE PROCEDURE. Contains over 100 illustrations. Price 2s. 6d.

*TEACHERS' HANDBOOK AND KEY TO MODERN TYPEWRITING. Price 2s. 6d. Interleaved with ruled paper, price 3s. 6d.

PRACTICAL TYPEWRITING AND EXAMINATION GUIDE (Morton). Price 2s. 6d.

* (These two books are also published in one vol. Price 5s.)
PERIODICALS.

The Magazine of Commerce and British Exporter.

A magnificently illustrated Monthly Magazine for Business Men and Commercial Teachers, who desire to keep abreast of the times. It gives the month's happenings in the commercial world and contains special articles on important business subjects. (Established 1902.) Monthly, 6d. net.

Pitman's Journal.

Contains six pages of Shorthand in the Learner's, Corresponding, and Reporting Styles, with Key, besides special articles of interest to all connected with commercial education. Subscription, which may begin at any time, 6s. 6d. per annum, post-free. (Estab. 1842), 32 pp. Weekly 1d., by post 1½d.

Pitman's Shorthand Weekly.

Illustrated. Gives every week eight pages of bright and entertaining matter printed entirely in shorthand. The ordinary letterpress pages contain helpful articles to students of shorthand and commercial subjects. Annual subscription, 6s. 6d.; half year, 3s. 3d.; quarter, 1s. 8d. (Established 1892.) Weekly 1d.; by post, 1½d.

The Success Ladder.

Edited by John Fenwick. A monthly magazine of cheer, progress, optimism, encouragement, and helpfulness for everybody. Monthly, 4d. net.
CATALOGUES, ETC.

Sir Isaac Pitman & Sons, Ltd., have pleasure in calling attention to the following Catalogues of Books published by them. They will be pleased to send on application any of these Catalogues, all of which are constantly brought up-to-date. Specimen page catalogues of textbooks on Book-keeping, Law, Business Training, Commercial Correspondence, and Languages, can also be had post-free on application.

[C] PITMAN'S EDUCATIONAL BOOKS (Primary). Illustrated. 56 pp.

[H] PITMAN'S SHORTHAND, TYPEWRITING, STATIONERY AND COMMERCIAL LANGUAGES CATALOGUE. 40 pp.

Any who may happen to be in the neighbourhood of St. Paul's Cathedral are cordially invited to visit Sir Isaac Pitman & Sons' Show Room, at 14 Warwick Lane, where their publications may be examined at leisure.