Review Article

ISSN 2320-4818
JSIR 2014; 3(4): 460-466
© 2014, All rights reserved
Received: 26-06-2014
Accepted: 24-08-2014

A review on the chemistry of some species of genus Lippia (Verbenaceae family)

Japheth Omollo Ombito*, Elsie Nyangweso Salano, Philemon Kipkirui Yegon, Wesley Kipkirui Ngetich, Elizabeth Muthoni Mwangi

Abstract

Recently, focus on plant research has increased globally and a large amount of evidence has collected to show great potential of medicinal plants employed in diverse traditional systems. In the customary forms of medicine, plants provided a large number of remedies, which were often useful. Lippia genus, which belongs to the family Verbenaceae yields appreciable quantities of metabolites some of which have been shown to have valuable biological activities. Many phytochemical investigations done on this genus have shown the presence of various compounds like triterpenoids, phenols, flavonoids, phenylpropanoids and steroids. This review focuses on ethnopharmacology, phytochemistry and pharmacology of Lippia genus to allow the evaluation of the potential for utilization of the largest biomass of Lippia genus available.

Keywords: Lippia, Triterpenoids, Phenols, Flavonoids, Phytochemistry, Pharmacology.

Introduction

The genus Lippia is one of 41 genera of shrubs, herbs or trees which belong to the family Verbenaceae Juss., and is named after the French natural historian and traveler, Augustin Lippi (1678-1701).1 This genus comprises of approximately 200 species distributed throughout tropical Africa as well as in Central and South America, with Brazil estimated to host 70–75% of the known species.2 Ethnobotanically, plant species from this genus are used worldwide as food, beverages, seasoning and remedies.3 The majority of Lippia species are used as remedies for gastrointestinal and respiratory complaints4, lung infections, dysentery and diarrhea5, analgesic, anti-inflammatory and antipyretic6, stomach ailments, coughs, colds and asthma.7 Most phytochemical studies of Lippia species have concentrated on the chemistry of the volatile constituents, resulting in limited information being available on the non-volatile secondary metabolites.8 According to these authors, the most significant non-volatile secondary metabolites produced by Lippia species include terpenes (some sesquiterpenes, di- and triterpenes), flavonoids, phenols, iridoid glycosides, phenylpropanoids and naphthoquinones. These compounds may be present in the form of glycosides, in which the compound is attached to one or more sugar moieties.

Medicinal importance and bioactivity of some of the isolated metabolites from Lippia species

Correspondence:
Japheth Omollo Ombito
Department of Chemistry, Egerton University, P.O. Box 536, Egerton-20115, Kenya
Tel: +254729020575
E-mail: jeffombito@gmail.com
a) Lippia nodiflora

Lippia nodiflora also known as *Phyla nodiflora* is a fast-growing, mat-forming and prostrate perennial plant. When in competition with other species, *L. nodiflora* is capable of growing to a height of between 20 and 30 cm, and overshadow other plants. The leaf and flower extracts of *Lippia nodiflora* have been shown to possess antimicrobial activity against various bacteria such as *Bacillus subtilis*, *Micrococcus luteus*, *B. cereus*, *Staphylococcus aureus*, *Klebsiella pneumonia*, *Pseudomonas aeruginosa*, *K. oxytoca*, and *Escherichia coli*. The methanolic extracts of *L. nodiflora* have been reported to possess antifungal activities against *Aspergillus niger* and *Candida albicans* as well as antidiabetic and hypolipidaemic properties in streptozotocin-induced diabetic rats. Chloroform and crude extracts also exhibit similar antimicrobial activities. A phytochemical analysis of methanol extract of the aerial parts of *L. nodiflora* led to the isolation a novel triterpenoid referred to as lippiacin (1) as well as a benzofuranone rengyolone referred to as halleridone (2). Other compounds include essential oils, resins, 6-hydroxyluteolin (3), hispidulin (4) and stigmasterol (5). The methanol extracts of *Lippia nodiflora* were also shown to have antidiabetic and hypolipidaemic properties in streptozotocin-induced diabetic rats (Fig. 1).

![Figure 1: Compounds isolated from Lippia nodiflora](image)

b) Lippia graveolens

Lippia graveolens, popularly referred to as “oregano” is frequently used in Mexico and the United States as a spice. The apical parts of the plant, when boiled and the fluid taken orally have been found to treat gastrointestinal diseases such as diarrhea, colic and stomach ache. Additionally, the plant has been used to induce abortions in women. The efficacy of the herb against gastrointestinal infections is attributed to the antibacterial properties of the extracts against both Gram-positive and Gram-negative bacteria. The herb also has antifungal activities against *Fusarium sporotrichum, Aspergillus niger, Trichophyton mentagrophytes, Fusarium moniliforme* and *Rhyzoctonia solani*. Extracts from *Lippia graveolens* also have antioxidant activities. Although a lot has been reported on the volatile components of this plant species, the non-volatiles have not been exploited to a greater extent. The essential oils from *Lippia graveolens* have been shown to exhibit larvicidal activity on 10-day-old *R. microplus* tick larvae due to the presence of active compounds such as...
thymol (6), carvacrol (7), p-cymene (8), and γ-terpinene (9). Carvacrol (7), the main compound in Lippia graveolens, was found to be also effective against human as well as animal viruses such as “acyclovir-resistant herpes simplex virus type 1 (ACVR-HHV-1), acyclovir-sensitive HHV-1, human respiratory syncytial virus (HRSV), bovine herpes virus type 2 (BoHV-2), and bovine viral diarrhoea virus (BVDV)” (Fig. 2).18

![Figure 2: Compounds isolated from Lippia graveolens](image)

c) Lippia citriodora

Lippia citriodora Kunth is widely spread in tropical, subtropical, central to South America, and in Africa. The plant, which flourishes in loamy soil, is bred from seeds and cuttings. The leaves are used in giving flavor to drinks, desserts, fruit salads and jellies and for spicing up food. A decoction made from the leaves and flowers is given as febrifuge, sedative and anti-flatulent.19 The plant showed antisplasmodic, antimicrobial properties and is traditionally used to treat *Candida*.20 From the ethyl acetate leaf extract of *L. citriodora*, three phenolic compounds: dihydrocaffeic acid (10), luteolin-7-O-glycoside (11) and 4-hydroxycinnamic acid (12) were isolated.21 The three compounds were tested for analgesic, antipyretic, antioxidant and anti-inflammatory activities on both mice and rats and were found to show good activity. In their study to evaluate the elastase inhibition activity of *L. Citriodora* leaves, Venkateswara and co-workers22 isolated three compounds: Oleanolic acid (13), Saccharose (14) and Saccharose octaacetae (15). Of the three compounds, the triterpenoid, Oleanolic acid showed good elastase activity with IC$_{50}$ value of 15.5µg/ml. *L. citriodora* has also been found to contain phenylpropanoids such as Verbascoside.23 This compound has been reported to possess antioxidant, antimicrobial, immunosuppressive and antitumour activities (Fig. 3).24

![Figure 3: Compounds isolated from Lippia citriodora](image)
d) **Lippia alba**

Lippia alba (Mill.) N. E. Brown is a herb that originated from South America whose medicinal attributes have been recognized since 1882. They are known for their non-volatile compounds from the leaves of *L. alba*. In the case of essential oil analysis, the major chemical compounds detected in the essential oil of *L. alba* were geranial and carvenone.\(^{27}\) In the case of non-volatile compounds investigated, the presence of three iridoids, geniposide (16), theveside (17) and shanzhizide methyl ester (18), was reported.\(^{28,29}\) All the three compounds were found again in one study, along with geniposidic acid (19), caryoptoside (20), 8-epiloganin (21) and mussaenoside (22).\(^{30}\) Two biflavonoids (23, 24) were also isolated.\(^{31}\) Only one work so far has been dedicated to the chemical composition of the roots of *Lippia alba* and led to the characterization of mussaenoside, theveside (25) and gardoside (26) (Fig. 4).\(^{32}\)

\begin{align*}
16 & \quad R_1 = H, R_2 = Me \\
17 & \quad R_1 = OH, R_2 = H \\
19 & \quad R_1 = H, R_2 = H \\
25 & \quad R_1 = OH, R_2 = Me \\
18 & \quad R_1 = OH, R_2 = H, R_3 = OH \\
20 & \quad R_1 = H, R_2 = OH, R_3 = OH \\
21 & \quad R_1 = H, R_2 = OH, R_3 = H \\
22 & \quad R_1 = H, R_2 = H, R_3 = OH \\
23 & \quad R = H \\
24 & \quad R = Me
\end{align*}

\[\text{Figure 4: Compounds isolated from *Lippia alba*}\]

e) **Lippia javanica**

Lippia javanica (Burm.f.) Spreng is an erect woody shrub of up to 2m high, with strong aromatic leaves, which gives off a lemon-like fragrance when crushed.\(^{33}\) Its infusion is commonly used in Africa as a tea against various ailments such as influenza, measles, rashes, malaria, stomach problems, fever, colds, cough, headaches. In such for bioactive compounds with antimicrobial activity against *Mycobacterium tuberculosis* and HIV-1 Reverse transcriptase, Mojovo and co-workers\(^{35}\) isolated eight compounds from *L. javanica* ethanolic extract. The eight compounds were: 4-ethyl-nonacosane (27), three monoterpenes, (E)-2(3)-tagetenone epoxide (28), myrcenone (29), piperitenone (30) and four flavanones, apigenin (31), cirsimaritin (32), 6-methoxyluteolin 4'-methyl ether (33) and 6-methoxyluteolin 3',4',7-trimethyl ether (34). Evaluation of these compounds against HIV RT showed that compounds (28 and 30 inhibited the enzyme by 91, 53 and 52% at 100 mg/mL. The results indicated that compound 28 could be of interest as a template in drug discovery research due to the higher activity as compared...
to the other compounds. The MIC of compound (32) was found to be 200 mg/mL against the H37Rv strain (Fig. 5).

$$\text{R}_1 = \text{H}, \text{R}_2 = \text{H}, \text{R}_3 = \text{H}, \text{R}_4 = \text{H}$$

$$\text{R}_1 = \text{H}, \text{R}_2 = \text{OH}, \text{R}_3 = \text{H}, \text{R}_4 = \text{H}$$

$$\text{R}_1 = \text{H}, \text{R}_2 = \text{OMe}, \text{R}_3 = \text{OH}, \text{R}_4 = \text{Me}$$

$$\text{R}_1 = \text{Me}, \text{R}_2 = \text{OMe}, \text{R}_3 = \text{OMe}, \text{R}_4 = \text{Me}$$

Figure 5: Compounds isolated from *Lippia javanica*

f) Lippia scaberrima

Lippia scaberrima is a perennial aromatic shrub that grows to a height of 0.3-0.6 m and occurs at altitudes between 765 and 1800 m above sea level. The plant is still widely used by ethnic groups in many communities. Cloths soaked in a decoction of the plant are applied to alleviate backache. It is also used in the treatment of coughs, colds, fever and bronchial problems. The astringent properties of the extract to make it suitable for the treatment of haemorrhoids. From the leaves of *L. scaberrima*, four compounds were isolated: 4-O-hexopyranosylhexopyranose (35), theviridoside (36) and (1S,4aR,7aR) - 4a-hydroxy -7 - (hydroxymethoxyl) - 4 - methyl - 1 , 4a , 5 ,7a-tetrahydrocyclopenta [c] pyran -1-yl (5, β)-1-glycero-hexopyranoside (37). The four compounds were tested for both antimicrobial and antifungal activities and were found to exhibit both antimicrobial and antifungal properties (Fig. 6).

Figure 6: Compounds isolated from *Lippia scaberrima*
Conclusion

Demand for herbal drugs is increasing day by day. Plants contain a number of chemical moieties, with varied pharmacological activities. Many potent and efficacious medicinal principles used for treating dreadful diseases have been isolated from the plant kingdom. So it is very clear that the study of the medicinal plants is important to meet the requirements in effective therapy. Phytochemical studies on the genus *Lippia* have shown that the plant it contains triterpenoids, phenols, flavonoids, phenylpropanoids, iridoid glycosides and steroids all of which have been reported to possess medicinal properties. As a result, *Lippia* plants should be explored further as an alternative source of medicine.

Acknowledgement

The authors thank the Department of Chemistry Egerton University, Kenya for providing a conducive research environment.

References

